
Team: RUPikachu
Members: Ezhil Nikhilan C, Aditya Maheshwari

Contact: {ezhil.nikhilan, aditya.maheshwari}@rutgers.edu

Task: To perform blocking for Entity Resolution in a limited time (35
minutes) i.e, filter out obvious non-matches.

Evaluation Metric: Recall & Runtime. Trivial equi-joins not to be
included, and output pairs to be transitively-closed.
Evaluation Environment: 16 CPU x 2.7 GHz, 32 GB Main, 32
GB Storage, Ubuntu 20.04.3 LTS

Task Overview

Methodology

We used a non-learning, schema-aware method to generate hash-
based blocking keys.
➢ Our solution involved 4 major steps:

1. Data analysis: To understand the data.
2. Data preprocessing: To clean the data.
3. Blocking key generation: From the extracted features
4. Postprocessing: To select the most relevant pairs.

Data Analysis

We identified dominant patterns in the data using tokenization and
TF-IDF. Our analysis focused on identifying,
➢ Product types: Like Laptops, SD cards etc.
➢ Product identifiers: Like brands, specs etc.
➢ Nature of the noise: Errors, inconsistencies, language

differences, missing information etc.

Data Preprocessing

We used regex and python string manipulation to standardize the
data for feature extraction. This involved,
• Standardization: Convert to lowercase, remove irrelevant

special characters.
• Error Correction: Correct the errors and inconsistencies

identified during Data analysis. Eg: datattraveler/data traveler →
datatraveler

• Semantic mapping: Map words of similar meaning to a single
identifier. Eg: class, clase, klase→ class

Blocking Key Generation

Features were extracted from the preprocessed data using Regex.
The extracted features were visualized through different data
visualization tools.

Based on the findings from the above step, we identified the best
feature combinations to create keys.
• Loose keys (such as brand+model) were used to capture the less

frequently occurring matches.
• Specific feature combinations to capture the more common

patterns.

Post Processing
Data Analysis

Pre-
processing

Feature
Extraction

Blocking key
generation

Block
selection

Sorting

Block Selection: Extremely common patterns were filtered out by
limiting the block size.

Sorting: The selected candidate pairs were sorted using Jaccard and
Overlap similarity to determine the top 3 million pairs.

Dataset Description Expected # of pairs

D1 Notebook Specifications 1000000

D2 Product Specifications 2000000

Results

​# ​Dataset 1 ​Dataset 2 ​Overall

​Recall

We achieved a better recall in the relatively smaller Dataset 1 with a
significant margin for improvement in the Dataset 2.

Discussion of results and Conclusion

Discussion: Multilingual nature, and the highly variable representation of specifications were the primary challenges in
designing a time-constrained blocking system for Dataset 2. Besides, the relatively small sample set X2, could not provide a
complete representation of the massive D2 dataset. It is notable that, despite achieving 0.9+ recall on the sample set, the final
recall did not cross the 0.25 mark.

Conclusion: Data analysis and visualization proved to be efficient in deriving insights about real-world data even using a small
sample set. Our choice of a hash-based method was useful in escaping the quadratic complexity of set similarity join
techniques, although the runtime can be further improved using multithreading.
A low correlation between the recall for the sample and the actual dataset hints that a more generic blocking system could
achieve a better recall. Efficient means of translating multilingual data could be useful for time-constrained blocking of real-
world data.

