Knowlog: Knowledge + Datalog for Distributed Systems

Matteo Interlandi
Supervised by Sonia Bergamaschi
University of Modena and Reggio Emilia
Modena, Italy

matteo.interlandi@unimore.it

ABSTRACT

One of the new emerging trends that is gaining a lot of
attentions in the database community is about distributed
programming in large datacenters. A lot of discussions are
arising around the CAP theorem [8] and how to achieve
correct and efficient programs while performing less coordi-
nated actions as possible. In order to address these issues,
monotonic logic programming [4] has been employed to for-
mally specify eventually consistent distributed programs.

We conjecture that a missing piece in the current state-
of-the-art is the capability to express statements about the
knowledge state of distributed nodes, i.e., statements about
what a node "knows” given the current system configura-
tion. In fact, reasoning about the state of remote nodes is
fundamental in distributed contexts in order to design and
analyze protocols behavior or perform coordinated actions
[10]. To reach this goal, we leverage Datalog™ with an epis-
temic modal operator, allowing the programmer to directly
express nodes’ state of knowledge instead of low level com-
munication details. As a result, reasoning about high level
properties of distributed programs can be performed. To
support the effectiveness of our proposal, we introduce, as
example, the declarative implementation of the well-known
protocol employed to execute distributed transactions: the
two phase commit protocol.

1. INTRODUCTION

Many authors have stated how logic programming in gen-
eral [14] and Datalog in particular [12] seems to particularly
fit in expressing distributed programs’ implementation and
properties. The demonstration of the CALM conjecture [6]
the last year at PODS is one more proof on how these two
worlds are tied together.

However, we think that a missing point in the current lit-
erature is the possibility to express statements about the
knowledge state of distributed nodes in Datalog, i.e., state-
ments defining which sentences are ” known” by a node given
its current information. In fact, the ability to reason about

knowledge states has been demonstrated [10] to be a funda-
mental tool in multi-agent systems in order to specify global
behaviors and properties of protocols. Furthermore it can
be noticed that a program composed by production rules is
very similar to (standard) program for multi-agent systems,
where a node i executes an action a; if the corresponding j-
th condition is evaluated true. Conversely, a knowledge-base
program has the form:

if < knowledge_condition > N\ < condition > then < action >

where the action is fired if the knowledge_condition is true
and the condition is satisfied by the node’s local state. Mo-
tivated by all these facts, we leveraged Datalog™ with the
epistemic modal operator K, allowing the programmer to
express directly nodes’ state of knowledge instead of low
level communication details. The advantage of this formal-
ism is that it abstracts away all the mechanisms by which
the knowledge is exchanged (message passing, shared mem-
ory, etc) maintaing, thus, an high level of declarativity in
the language. To support our assertions, we describe an
implementation of the two phase commit protocol.

The remainder of the paper is organized as follows: Sec-
tion 2 contains some preliminary notations about Datalog
dialects our language is based upon. Section 3 describes
what we intend for a distributed system and it presents some
concepts such as global state and run that will be used in
subsequent sections. Section 4 specifies the modal operator
K and introduces how this modal operator can be embedded
in Datalog in order to define Knowlog. In addition, Section
4 contains the two phase commit protocol implementation.
The paper finishes with Section 5 which specifies Knowlog’s
semantics, Section 6 which contains related works and Sec-
tion 7 composed by some concluding remarks and future
work.

2. PRELIMINARIES

Before defining Knowlog, we first introduce some princi-
ples of Datalog™ [2, 23], and Datalog™ augmented with tem-
poral constructs [19, 5]. A Datalog™ rule is an expression in
the form:

H(ﬁ) — Bl(ﬁ1), . Bn(ﬂn), —\01(1_}1), . —Cm(q‘;m)

where n,m > 0, H, B;, C; are relation names i = 0,...,n
and j = 0,...,m and u, u;,v; are tuples of appropriate ari-
ties. Tuples are composed by terms and each term can be
a constant in the domain dom or a variable in the set var.
We will interchangeably use the words predicate, relation
and table. As usual H(u) is referred as the head, B;(u),

C;(v;) as the body, and in general H (@), B;(u;) and C;(7;)
as atoms. A literal is an atom (in this case we refer to it
as positive) or the negation of an atom. If m = 0, the rule
is in Datalog form and express a definite clause, while if
m = n = 0 the rule is expressing a fact clause. We refer
to a fact clause directly as a fact or equivalently as a groud
atom if it does not contain variable terms. A predicate ap-
pearing in the body of a rule can also be used as head in
the same rule, therefore implementing recursive computa-
tion. We allow built-in predicates to appear in the body of
rules. Thus, we allow relation names such as =,#,<, <, >,
and >. We also allow aggregate operations in rule heads in
the form R(@,A < i >) with A one of the usual aggregate
functions and < § > defining the grouping of arguments f
[22].

In this paper we assume that each rule is safe, i.e. every
variable occurring in a rule head appears in at least one
positive literal of the rule body. Then, a Datalog” program
IT is a set of safe rules. As usual, we refer to the itensional
part of the database schema db(II), as the set of relations
that appears in at least one II’s rule head, while we refer to
the extensional database edb(Il) as the set of relations that
do not appear in any II’s rule head. For a database schema
R, a database instance is a finite set I constructed by the
union of relations’ instances over R, with R € R a relation
name and where each relation’s instance is a finite set of
facts.

As introductory example, we use the program depicted
in Listing 1 where with two rules we are able to trivially
compute the transitive closure of an extensional relation. In
our example we used an edb relation link containing tuples
in the form (S,D) which specifies the existence of a link
between the source node S and the destination node D. In
addition, we employ an intensional relation path with tuples,
as above, in the form (8,D), which is computed starting
from the link relation (r1) and recursively adding a new
path when, roughly speaking, a link exists from A to B and
a path already exists from B to C (r2).

r1: path(X,Y):-1link(X,Y).
r2: path(X,Z):-1ink(X,Y),path(Y,Z).

Listing 1: Simple Recursive Datalog Program

2.1 Time in Datalog-

With the language that we are going to introduce, we want
to model programs for distributed systems. These systems
are not static, but evolving with time. Therefore it will be
useful to enrich Datalog™ with a notion of time. For this
purpose we follow the road traced by Dedalusy [5]. Thus,
starting with considering time isomorphic to the set of nat-
ural numbers Ny, a new schema R7 is defined starting from
R by incrementing the arity of each relation R € R by one,
and introducing a new built-in relation succ with arity two.
succ(z,y) is interpreted true if y = x + 1. By convention,
the new extra term, called time suffiz, appears as the last
attribute in every relation and has values in Ng. A predi-
cate over R” has, therefore, the (reified) form R(ty, ..., tn, s)
or equivalently R(t1,...,tn)@s where s is the time suffix
s € SUNp with S a new set of time variables disjoined
from var. We will sometimes adopt the term timestamp to
refer to the time suffix value. In fact, each tuple can be
views as timestamped with the evaluation step in which it

is valid. For conciseness we will employ the term time-step
to denote an evaluation step.

By incorporating the time suffix term in the schema defi-
nition, we now have multiple instances for each relation, one
for each timestamp. In this situation, with I[0] it is named
the initial database instance comprising all ground atoms
existing at the initial time 0, while with I[n] the instance
at time n. As a consequence of this approach, tuples by
default are considered ephemeral, i.e. they are valid only
for one single time-step. Obviously, tuples can became per-
sistent, i.e., once derived, for example at time s, they will
eventually last for every timestamp ¢ > s. To reach this
goal, persistent relations are introduced: (I) for each in-
tensional relation P € R” that should maintain tuples for
consequent states, a new ¢ relation del_P is added to the
database schema with the semantics that facts in del_PQs
will not appear in P at state t = s + 1; (II) for each ex-
tensional relation R two predicates R_pos and (optionally)
R_del € § are added to the RT schema. In addition, the
following rule is added:

R_pos@Q0 < R

In this way for each extensional predicate R, one intensional
relation exists that contains at least the tuple originally
stored in R. The just introduced rules are the only ones
permitted to involve extensional predicates. This property
is called guarded edb [5]. (III) A new (mutual)persistency
rule is added to the program in order to move towards time-
steps tuples that don’t have to be deleted:

PQt <+ PQs, ~del_PQs, succ(s,t)

where —del_P@Qs is not mandatory. Predicates related to the
next time-step can be specified only in rule head. With this
simple formalism we are not only able to maintain base rela-
tions, but also to achieve materialized views: i.e. persisting
idb relations. Program rules are then divided in two sets: in-
ductive and deductive. The former set contains all the rules
employed for transferring tuples through time-steps, while
the latter encompasses rules that are instantaneous, i.e, lo-
cal into a single time-step. Deductive rules are hence used
to describe what is true in a single time-step given what is
known at that point in time [5]. Some syntactic sugar is
adopted to better characterize rules and relations: all time
suffixes are eliminated together with the succ relation, and
a next suffix is introduced in head relations to characterize
inductive rules.

inductive : headQnext < body
deductive : head < body

In Listing 2 the simple program of the previous section is
rewritten in order to introduce the new formalism. A rule
for the modification of the 1ink relation is also added, rep-
resenting the happening of an event on a link which causes
the link to be disconnected.

ri: 1link(X,Y)O@next:-1ink(X,Y),—del_link(X,Y).
r2: del_link(X,Y):-link_down(X,Y).

r3: path(X,Y):-1link(X,Y).

r4: path(X,Z):-1ink(X,Y),path(Y,Z).

Listing 2: Inductive and Deductive Rules

3. DISTRIBUTED LOGIC PROGRAMMING

Before starting the discussion on how we leverage the
language with epistemic operators, we first introduce our
distributed system model and how communication among
nodes is performed. We define a distributed message-passing
system to be a non empty finite set N' = {id1,ido, ..., id, } of
share-nothing nodes joined by bidirectional communication
links. Each node identifier has a value in the domain dom
but, for simplicity, we assume that a node id; is identified
by its subscript i. Thus, in the followings we consider the
set N = {1,...,n} of node identifiers, where n is the total
number of nodes in the system.

Then, with adb we denote a new set of accessible rela-
tions encompassing all the tables in which either facts are
created remotely or they need to be delivered to another
node. These relations can be viewed as tables that are hori-
zontally partitioned among nodes and through which nodes
are able to communicate. Each relation R € adb contains a
location specifier term [17]. This term maintains the iden-
tifier of the node to which every new fact inserted into the
relation R belongs. Hence, the nature of adb relations can be
considered twofold: for one perspective they act as normal
relations, but from another perspective they are local buffers
associated to relations stored in remote nodes. As pointed
out in [12, 5], modeling communication using relations pro-
vides major advantages. For instance, the disordered nature
of sets appears particularly appropriate to represent the ba-
sic communication channel behavior by which messages are
delivered out of order. If reliability, sequentiality or others
higher level properties must be ensured, they can be ob-
tained adding program modules implementing the required
property.

Continuing with the same example of previous sections,
we can now use it to actually program a distributed rout-
ing protocol. In order to describe the example of Listing
3 we can imagine a real network configuration where each
node has the program locally installed, and where each 1ink
relation reflects the actual state of the connection between
nodes. For instance, we will have the fact 1ink (A,B) in node
A instance if a communication link between A and node B
exists. The location specifier term is identified by the prefix
#.

ri: 1link(X,Y)O@next:-1ink(X,Y),—del_link(X,Y).

r2: del_link(X,Y):-link_down(X,Y).

r3: path(#X,Y):-1link(X,Y).

r4: path(#X,Z):-1ink(X,Y) ,path(#Y,Z).

Listing 3: Inductive and Deductive Rules

The semantics of Listing 3’s program is the same of the pre-
vious sections, even though operationally it substantially dif-
fers. In fact, in this new version, computation is performed
simultaneously on multiple distributed nodes. Communica-
tion is achieved through rule r4 which, informally, specifies
that a path from a generic node A to node C' exists if there
is a link from A to another node B and this last knows that
a path exists from B to C. The body of rule r4 contains rela-
tions stored in different nodes, therefore implicitly assuming
that tuples are exchanged between nodes, and that the com-
putation of the join(s) is local to a single node. In order to
have an explicit notion of communication - i.e., the location
specifier of the head differs from the location specifiers of the
relations in the body - and the computation local to a single
node - i.e., relations in the body all have the same location

specifier - a rule localization rewrite algorithm is employed
[17]. Rule r4 is hence rewritten in the two rules of Listing
4.

r4_a: link_r(#Y,X):-1link(X,Y).
r4 b: path(#X,Z):-1ink(Y,X),link_r (#Y,X),path(#Y,Z).

Listing 4: Rewriting of Rule r4 of Listing 3

3.1 Local State, Global State and Runs

In every point in time, each node is in some particular
local state encapsulating all the information the node is in
possess. The local state s; of a node i € N can then be
defined as a tuple (II;,Z;) where II; is the finite set of rules
composing node #’s program, and Z; C I[n]; is a set of facts
belonging to node i. We define the global state of a dis-
tributed system as a tuple (s1,...,S,) where s; is node 4’s
state. We define how global states may change over time
through the notion of run, which binds (real) time values
to global states. If we assume time values to be isomorphic
to the set of natural numbers, we can define the function
r: N — G where G = {51 X ... X Sp} with S; be the set
of possible local states for node i € N. We refer to the a
tuple (r,t) consisting of a run r and a time ¢ as a point. If
r(t) = (s1, ..., $n) is the global state at point (r,t), we define
ri(t) = s;, for i = 1,...,n; thus, r;(¢) is node #’s local state
at the point (r,¢) [10]. To note that the (real) time and
the notion of time(stamp) incapsulated in the program so
far are two different entities. We will investigate in the fu-
ture how these notions can be linked to define for example,
synchronous or asynchronous systems.

A system may have many possible runs, indicating all the
possible ways the global state of the system can evolve. We
define a system as a set of runs. Using this definition we
are able to deal with a system not as a collection of inter-
acting nodes but, instead, directly modeling its behavior,
abstracting away many low level details. We think that this
approach is particularly important in our scope of maintaing
in our language an high level of declarativity.

4. REASONING ABOUT KNOWLEDGE IN
DISTRIBUTED SYSTEMS

In the model we have developed so far, all computations
that a node can accomplish are consequences of its local
state. If we consider two runs of a system, with global states
respectively g = (s1, ..., 8n) and ¢’ = (s1, ..., s,), g and g’ are
indistinguishable for node i, and we will write g ~; ¢’ if 4
has the same local state both in g and ¢, i.e. s; = s;. It
has been shown in [10] that a system S can be viewed as a
Kripke frame. A Kripke frame is a tuple F = (W, K1, ..., K»)
where W is a non empty set of possible worlds (in our case a
set of possible global states) and K; with ¢ € N is a binary
relation in W x W which is intended to capture the acces-
stbility relation according to node 4: this is, (w,u) € K;
if node i consider world u possible given its information in
world w. Or, in other words, we want K to be equivalent
to the ~ relation, therefore maintaining the intuition that
a node i considers u possible in global state w if they are
indistinguishable, i.e., in both global states, node i has the
same local state. In order to model this situation, K must be
an equivalence relation on W x W. K to be an equivalence
relation must be a binary relation satisfying the following
properties:

e reflexive: for all w € W, (w,w) € K
e symmetric: for all w,u € W, (w,u) € K iif (u,w) € K

e transitive: for all w,u,0 € W, if (w,u) € K and
(u,0) € K then (w,0) € K

To map each rule and fact to the global states in which
they are true, we define an interpreted system I' as the tuple
(S,7) with S a system over a set of global states G and 7
an interpretation function which maps first-order clauses to
global states [10]. More formally, we build a structure over
the Kripke frame F in order to map each program II; and
each ground atom in Z; to the possible worlds in which they
are true. To reach this goal, we define a Kripke structure
M = (F,U,w) where F is a Kripke frame, U is the Her-
brand Universe, 7 is a function which maps every possible
world to a Herbrant interpretation over first-order clauses
3,1 associated with the rules of the program II and the
input instance I, and II = |J;_, II;, I = J;_, I:;[0]. To be
precise, ¥,1 can be constructed starting from the program
IT and translating each rule p € II in its first-order Horn
clause form. This process creates the set of sentences Y.
To get the logical theory X 1, starting from X we add one
sentence R(u) for each fact R(@) in the instance [2, 16]. A
valuation v on M is now a function that assign to each vari-
able a value in U. In our settings both the interpretation
and the variables valuation are fixed. This means that v(x)
is independent of the state, and a constant ¢ has the same
meaning in every state in which exists. Thus, constants and
relation symbols in our settings are rigid designators [10,
20]. Given a Kripke structure M, a world w € W and a
valuation v on M, the satisfaction relation (M,w,v) E ¥
for a formula ¥ € X1 is as usual.

We now introduce the modal operator K; in order to ex-
press what a generic node i ” knows”, namely which of the
sentences in X1,1 are known by the node i. Given ¢ € ¥ 1,
a world w in the Kripke structure M, the node ¢ knows v -
we will write K;v - in world w if % is true in all the worlds
that ¢ considers possible in w [10]. Formally:

(M, w,v) = K iff (M, u,v) = for all u s.t. (w,u) € K;

This definition of knowledge has the valid properties that
are called S5. We refer the reader to [13] for a detailed
discussion about the properties of the modal operator K.

4.1 Knowlog

In the previous section we described how knowledge as-
sumptions can be expressed using first-order Horn clauses
representing our program. We can now move back to the
rule form. We use symbols O and [J to denote a (possibly
empty) sequence of modal operators K;, with i specifying a
node identifier. Given a sentence in the modal Horn clause
form, we use the following statement to express it in a rule
form:

[](}{ — 131,.“,l3n4‘ﬁ(71,.n,—ﬁ62n) (1)
with n,m > 0 and each atom in the form CR.

Definition 1. The modal context [is the sequence - with
the maximum length of one - of modal operators K appear-
ing in front of a rule.

We put some restriction on the sequence of operators per-
mitted in [].

Definition 2. Given a (possibly empty) sequence of oper-
ators [, we say that [J is in restricted form if it does not
contain K; K; subsequences.

Definition 3. A Knowlog program is a set of rules in the
form (1), containing only (possibly empty) sequences of modal
operators in the restricted form and where the subscript ¢
of each modal operator K; can be a constant or a variable.

Informally speaking, given a Knowlog program, with the
modal context we are able to assign to each node the rules
the node is responsible for, while atoms and facts residing
in the node i are in the form K; [J R. In order to specify
how communication is achieved we redefine communication
rules as follows:

Definition 4. A communication rule in Knowlog is a rule
where no modal context is set and body atoms have the
form K; [R - they are all prefixed with a modal operators
pointing to the same node - while the head atom has the
form K; O R, with ¢ # j.

In this way, we are able to abstract away all the low level
details about how information is exchanged, leaving to the
programmer just the task to specify what a node should
know, and not how.

4.1.1 The Two-Phase-Commit Protocol

Inspired by [3], we implemented the two-phase-commit
protocol (2PC) using the epistemic operator K. 2PC is used
to execute distributed transaction and it is divided in two
phases: in the first phase, called the voting phase, a coordi-
nator node submits to all the transaction’s participants the
willingness to perform a distributed commit. Consequently,
each participant sends a vote to the coordinator, expressing
its intention (a yes vote in case it is ready, a no vote oth-
erwise). In the second phase - namely the decision phase -
the coordinator collects all votes and decides if performing
global commit or abort. The decision is then issued to the
participants which act accordingly.

In the 2PC implementation of Listing 5, we assume that
our system is composed by three nodes: one coordinator and
two participants. With log(Tx_id,State) and transaction
(Tx_id,State) we denote respectively the log and the state
of the transaction, where Tx_id is the term specifying the
unique transaction identifier, while State is the current state
of the transaction. We use the ephemeral relation vote
(Vote,Tx_id,Part) to store the vote of the participant Part
related to the transaction Tx_id. A vote is chosen by each
participant based on the state of the local database (db_
status(Vote)). part_cnt(count<N>) and yes_cnt(Tx-id,
count<part>) are two aggregate relations, with the first
maintaining the number of participants, and the second count-
ing the number of received "yes" votes. We considerably
simplify the 2PC protocol by disregarding failures and time-
outs actions, since our goal is not an exhaustive exposition
of the 2PC.

\\Initialization at coordinator

rl: Kc(transaction(Tx_id,State)@next:-
transaction(Tx_id,State),
—del_transaction(Tx_id,State)).

r2: Kc(log(Tx_id,State)@next:-log(Tx_id,State)).

r3: Kc(part_cnt(count<N>):-participants(N)).

r4: Kc(transaction(Tx_id,State):-log(Tx_id,State)).

r5: Kcparticipants(P1).

r6: Kcparticipants(P2).

\\Initialization at participants
r7: Kp(transaction(Tx_id,State)@next:-
transaction(Tx_id,State),
—del_transaction(Tx_id,State)).
r8: Kp(log(Tx_id,State)@next:-log(Tx_id,State)).

\\Decision Phase at coordinator

r9: Kc(yes_cnt(Tx_id,count<Part>):-
vote(Vote,Tx_id,Part),Vote == "yes").

r10: Kc(log(Tx_id,"commit")@next:-part_cnt(C),
yes_cnt (Tx_id,C1) ,C==C1,State=="vote-req",
transaction(Tx_id,State)).

ri1: Kc(log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),
Vote == "no",transaction(Tx_id,State),
State =="vote-req").

\\Voting Phase at participants
r12: Kp(log(Tx_id,"prepare"):-State=="vote-req",
Kctransaction(Tx_id,State)).
r13: Kp(log("abort",Tx_id):-log(Tx_id,State),
State=="prepare",db_status(Vote),Vote=="no").

\\Decision Phase at participants
ri14: Kp(log(Tx_id,"commit"):-log(Tx_id,State_1),
State_l=="prepare",State_t=="commit",
Kctransaction(Tx_id,State_t)).
r15: Kp(log(Tx_id,"abort"):-log(Tx_id,State_1),
State_l=="prepare",State_t=="abort",
Kc.transaction(Tx_id,State_t)).

\\Communication
r16: Kytransaction(Tx_id, State):-Kcparticipants(X),
Kctransaction(Tx_id,State).
r17: Kcvote(Vote,Tx_id,"partl"):-Kpilog(Tx_id,State),
State=="prepare",Kp1db_status(Vote).
r18: Kcvote(Vote,Tx_id,"part2"):-Keplog(Tx_id,State),
State=="prepare",Kpodb_status (Vote).

Listing 5: Two Phase Commit Protocol

In the above example, for simplicity we wrote K; as modal
context instead of Kpi and Kpe. This program is a typical
example showing how logical programming permits to spec-
ify even complex algorithms using few lines of code, which
are almost a faithful translation of algorithms specified in
pseudocode [12, 14].

S. KNOWLOG SEMANTICS

The first step towards the definition of Knowlog’s seman-
tics is the specification of the reified version of Knowlog.
For this purpose, we augment dom with a new set of con-
stants A containing the modal symbols. We also assume a
new set of variables O that will range over the just defined
set of modal elements. We then construct R7* adding to
each relation R € RT a new term called knowledge accu-
mulator and a new set of built-in relations K and &. A tu-
ple over the RT* schema will have the form (k, s, t1, ..., t,)
where k € OUA identifies the knowledge accumulator term,
s € SUN and t4, ..., t, € varUdom. Conversely, tuples over
adb relations, i.e., relations in the head of at least one com-
munication rule, will have the form (k,1, s, t1,...,tn), with [
the location specifier term.

If the knowledge operator used in front of a non-adb re-
lation is a constant, i.e., KsKzinput("value"), the reified
version will be input (Y,n,"value"),Y = Ks & Ky for ex-
ample at time-step n. The operator @ is hence employed

to concatenate epistemic operators. Instead, in case the op-
erator employes a variable for identifying nodes, we need
to introduce in RT¥ relation K(X,Y) in order to help us in
the effort of building the knowledge accumulator term. The
first term of the K relation is a node identifier : € N and the
Y term is a value in A determined by the K operator and
the node identifier. Thus, for example, the reified version
of Kyxtransaction(Tx-id,State) ,participants(X) will be
K(X,Y) ,transaction(Y,n,Tx_id,State) ,participants(X).

What about the modal context? We already mentioned
that the modal context is used to identify the node where a
certain rule or fact must be installed. In the reified version of
Knowlog, we push the modal context [J into the knowledge
accumulator term, hence initially all the facts belonging to a
node ¢ € N will have the knowledge accumulator in the form
K. For what concern communication rules, the process is
the same as above, but this time we have to fill also the loca-
tion specifier field of the head-relation. To accomplish this,
given the head relation R € adb in the form K;OR(t1, ..., tn),
the reified version will be R(K;0,n,i,t1,...,tn). Using this
semantics, nodes are able to communicate using the mecha-
nism described in Section 3. For a discussion on Knowlog’s
operational semantics, we refer to the technical report [13].

6. RELATED WORKS

In the last few years a renew interest in Datalog is arising,
especially pushed by new emerging trends such as packets
routing [17], overlay networks [18], network provenance [24]
and web data management [1]. Our work, in particular is
motivated by [12] where the author discusses how Datalog™
programs are interestingly suited to express logically dis-
tributed systems and their properties. Knowlog, as pointed
out multiple times in the paper, is heavily based on Dedalus
[5] and Statelog [19]. The notion of knowledge applied to
multi-agent systems was first discussed in [11] but we take
cue from the comprehensive exposition of [10].

In literature many approaches exist for enhancing logic
programming with modal operators. A survey is presented
in [21]. To be brief, two classes can be identified based on the
employed methodology: direct approaches and translation
approaches. The first directly handles modalities, while the
second translates modal programs in classical logical pro-
grams. We embrace the first approach.

We found in literature just a couple of languages that
share some principles with Knowlog. One is Datalog® and
is introduced in [15]. Datalog™ is basically Datalog™ aug-
mented with knowledge operators K and P in order to ex-
press data replication and data fragmentation among dis-
tributed databases. They define the model-theoretic, the
operational semantics and a proof that these semantics co-
incides. Datalog™ is only able to manage static systems
since no notion of time or state is used in the language.
Moreover, knowledge operators are defined using a modal
structure (W, V') where the set of possible worlds W con-
tains the different sites where data can be stored, and not
global states as in our case, therefore loosing the ability to
express the behavior of a distributed system. Another ap-
proach similar to our, is introduced in [7] where answer set
programming (ASP) is used to reason about multi-agent sys-
tems following the translational approach. On the contrary,
our aim is to build a real distributed system where, exploit-
ing the direct approach, each agent is able to directly reason
on the system and then act accordingly.

7. CONCLUSION AND FUTURE WORK

In this paper we have presented Knowlog, a programming
language based on Datalog™ leveraged with a notion of time
and the modal operator K. Through Knowlog, reasoning
about states of knowledge in distributed systems can be
performed, therefore lightening the programmer’s burden of
expressing low level communication details. What we dis-
cussed here is a first step towards the definition of a compre-
hensive logical framework able to define a declarative as well
as operational semantics, and generic enough to be adopted
in multiple contexts. We are confident that following our ap-
proach, properties such as nodes coordination and replicas
consistency can be exhaustively defined. To this purpose, we
will incorporate in Knowlog the distributed knowledge, and
overall the common knowledge operator that has be proven
to be linked to concepts such as coordination, agreement
and consistency [10]. The successive step will be the defini-
tion in Knowlog of weaken forms of common knowledge such
as eventual common knowledge. Since we are dealing with
”state of knowledge”, another interesting point that we are
going to investigate will be the specification of how nodes
”learn” [9].

8. REFERENCES

[1] S. Abiteboul, M. Bienvenu, A. Galland, and
E. Antoine. A rule-based language for web data
management. In Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’11, pages 293-304, New
York, NY, USA, 2011. ACM.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] P. Alvaro, T. Condie, N. Conway, J. M. Hellerstein,
and R. Sears. I do declare: consensus in a logic
language. Operating Systems Review, 43(4):25-30,
2009.

[4] P. Alvaro, N. Conway, J. Hellerstein, and W. R.
Marczak. Consistency analysis in bloom: a calm and
collected approach. In CIDR, pages 249260, 2011.

[5] P. Alvaro, W. R. Marczak, N. Conway, J. M.
Hellerstein, D. Maier, and R. Sears. Dedalus: Datalog
in time and space. In Datalog2.0, pages 262—-281, 2010.

[6] T. J. Ameloot, F. Neven, and J. Van den Bussche.
Relational transducers for declarative networking. In
Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’11, pages 283-292, New
York, NY, USA, 2011. ACM.

[7] C. Baral, G. Gelfond, T. C. Son, and E. Pontelli.
Using answer set programming to model multi-agent
scenarios involving agents’ knowledge about other’s
knowledge. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent
Systems: volume 1 - Volume 1, AAMAS ’10, pages
259-266, Richland, SC, 2010.

[8] E. A. Brewer. Towards robust distributed systems
(abstract). In Proceedings of the nineteenth annual
ACM symposium on Principles of distributed
computing, PODC ’00, pages 7—, New York, NY, USA,
2000. ACM.

[9] K. M. Chandy and J. Misra. How processes learn. In
Proceedings of the fourth annual ACM symposium on

(18]

23]

24]

Principles of distributed computing, PODC ’85, pages
204-214, New York, NY, USA, 1985. ACM.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. MIT Press, Cambridge,
MA, USA, 2003.

J. Y. Halpern and Y. Moses. Knowledge and common
knowledge in a distributed environment. In
Proceedings of the third annual ACM symposium on
Principles of distributed computing, PODC 84, pages
50-61, New York, NY, USA, 1984. ACM.

J. M. Hellerstein. The declarative imperative:
experiences and conjectures in distributed logic.
SIGMOD Rec., 39:5-19, September 2010.

M. Interlandi. Knowlog®: A declarative language for
reasoning about knowledge in distributed systems.
http://wuw.dbgroup.unimo.it/TechnicalReport/
interlandi2012.pdf, March 2012. Technical Report.
L. Lamport. The temporal logic of actions. ACM
Trans. Program. Lang. Syst., 16:872-923, May 1994.
M. Levene and G. Loizou. A modal logic formalism for
distributed and parallel knowledge bases. Parallel
Algorithms Appl., 1(1):11-27, 1993.

J. Lloyd. Foundations of logic programming. Symbolic
computation: Artificial intelligence. Springer, 1987.
B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay,

J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,

T. Roscoe, and I. Stoica. Declarative networking:
language, execution and optimization. In Proceedings
of the 2006 ACM SIGMOD international conference
on Management of data, SIGMOD ’06, pages 97-108,
New York, NY, USA, 2006. ACM.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. In Proceedings of the twentieth ACM
symposium on Operating systems principles, SOSP
'05, pages 75—90, New York, NY, USA, 2005. ACM.
B. Ludascher. Integration of Active and Deductive
Database Rules, volume 45 of DISDBIS. Infix Verlag,
St. Augustin, Germany, 1998.

L. A. Nguyen. Foundations of modal deductive
databases. Fundam. Inf., 79:85-135, January 2007.
M. A. Orgun and W. Ma. An overview of temporal
and modal logic programming. In Proceedings of the
First International Conference on Temporal Logic,
ICTL 94, pages 445-479, London, UK, 1994.
Springer-Verlag.

R. Ramakrishnan and J. D. Ullman. A survey of
deductive database systems. J. Log. Program.,
23(2):125-149, 1995.

C. Zaniolo. Advanced database systems. Morgan
Kaufmann series in data management systems.
Morgan Kaufmann Publishers, 1997.

W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and

Y. Mao. Efficient querying and maintenance of
network provenance at internet-scale. In Proceedings
of the 2010 international conference on Management
of data, SIGMOD ’10, pages 615-626, New York, NY,
USA, 2010. ACM.

