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ABSTRACT 

Tactical networking environments demand reliable, 
robust, and efficient approaches to disseminating 
information that are tolerant to unreliable and 
bandwidth-constrained networks. This paper describes 
DisService, an Agile Computing approach to 
information dissemination that opportunistically 
discovers and exploits excess communications, storage, 
and processing capacity in a distributed network to 
improve the performance of information dissemination. 
DisService is disruption tolerant and caches data 
throughout the network by replicating the data. Nodes 
subscribe to hierarchically organized groups. 
Information is published in the context of a group, and 
may also be tagged to differentiate between multiple 
types of data (e.g., blue-force tracking, sensor data, 
logistics, or other runtime information). Each node 
operates in a distributed, peer-to-peer manner while 
processing and communicating the published 
information and requested subscriptions from 
neighboring nodes. Information is disseminated using an 
efficient combination of push and pull, depending on the 
number of subscribers, the capacity of the network, the 
stability of nodes in the network, and the predicted 
information needs of users. Finally, DisService also 
supports efficient dissemination of large data by 
replicating and scattering fragments throughout the 
network. These features combine to realize an effective 
approach to information dissemination for tactical 
networks. 
 

1. INTRODUCTION 

Tactical military environments are often highly dynamic 
and consist of fixed and mobile nodes such as 
unattended ground sensors (UGS), robots, dismounted 
soldiers, ground vehicles, and airborne nodes such as 
UAVs. These nodes are often interconnected with 
wireless networks that result in unreliable and 
bandwidth-constrained links. Moreover, power 
constraints, especially for battery-powered devices, 
require efficient use of processing, storage, and 
communications. In spite of the challenges posed by 
these environments, users demand reliable, robust, and 
efficient approaches to information dissemination.  

This paper presents the design and implementation 
of DisService – an information dissemination service 
that is part of the Agile Computing Middleware. 
DisService opportunistically discovers and exploits 
excess communications, storage, and processing capacity 
in a distributed network to improve the performance of 
information dissemination. It supports the storage and 
forwarding of data and caches data throughout the 
network, thereby making it disruption tolerant and 
improving the availability of data. Information is 
published in the context of a group, and may also be 
tagged to differentiate between multiple types of data 
(e.g., blue-force tracking, sensor data, logistics, or other 
runtime information). Each node in the network running 
DisService operates in a distributed, peer-to-peer manner 
while processing and communicating the published 
information and requested subscriptions from 
neighboring nodes. DisService disseminates information 
using an efficient combination of push and pull 
mechanisms, depending on the number of subscribers, 
the capacity of the network, and the stability of nodes in 
the network. DisService takes into account the user's 
preferences in order to anticipate information requests as 
well. In addition it proactively fragments large data 
objects and replicates the fragments in order to improve 
sharing and increase availability of large data objects. 

This paper is organized as follows. Section 2 
presents three motivating scenarios for data 
dissemination in a tactical environment. Section 3 
describes the DisService capabilities. Section 4 presents 
the DisService architecture and design. Section 5 
highlights the unique design features of DisService. 
Section 6 presents the evaluation of DisService 
performance. Finally, section 7 presents conclusions and 
discusses future work. 
 

2. MOTIVATING SCENARIOS 

The emerging tactical environment consists of assets 
with vastly different computing, communications, 
storage, and survivability capabilities. At one extreme, 
low-power miniaturized Unattended Ground Sensors 
(UGS) offer minimal computing, communications, and 
storage capabilities and can survive months or even 
years in a hostile environment. At the other extreme, 
large tactical vehicles are capable of carrying racks of 
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high-performance servers and fast long-range radios but 
are large, loud, and can survive only as long as their fuel 
supply. These nodes have network connectivity that is 
limited and intermittent, caused by lack of radio 
coverage, resource contention, or the desire to operate in 
a clandestine manner and maintain radio silence. Given 
these constraints, providing a high operational time in 
tactical missions is a significant challenge. While on a 
mission, soldiers need to access a variety of information 
including maps, aerial reconnaissance, various sensor 
data, intelligence reports, and blue and red force 
tracking. Some of this data may be preloaded onto the 
nodes and some may become available later. This 
information has been classified as follows: 

Situational awareness data needs to be 
disseminated as widely as possible throughout the 
network while minimizing redundant transmissions and 
latency using an intelligent flooding strategy. SA data 
includes blue-force tracking data showing the location 
and intent of friendly forces as well as fused sensor data 
that has been used to generate enemy location reports. 

Directed data is of interest to only a single node or 
a small number of nodes. This type of data needs to be 
delivered to its destination as quickly and efficiently as 
possible. This data may also need to be held for future 
transmission if the destination is currently unreachable. 
Directed data can include raw sensor data which needs to 
be processed and correlated with data from other sensors 
at a fusion station. 

On-demand data is data that is large or otherwise 
problematic to transmit and is only of interest to some 
nodes some of the time. To minimize impact on the 
network, this data should be delivered only to interested 
nodes on an as-needed basis. Metadata describing each 
data item needs to be disseminated as situational 
awareness data. This class of data includes images and 
video collected by sensors, unmanned vehicles, or 
analysts. 

These three classes of information are treated in the 
following evaluation scenarios: 
 
2.1 Harvester scenario: In this scenario, a number of 
different sensor fields connected by low-bandwidth, 
power-saving radios are deployed within an area of 
interest. While most of these devices have extremely 
limited storage and communication capabilities, one is 
designated to be a gateway and is equipped with greater 
storage and communication capabilities. As data is 
collected by each of the sensors within the field, it is 
directed to the gateway where it is held until a harvester 
(potentially residing on a ground vehicle or UAV) comes 
within range to collect the data. The sensor gateway then 

dumps all of the sensor data (which consists of both raw 
sensor detections and multimedia images or video) to the 
harvester. The harvester, equipped with extra storage and 
long-range radios, is often in contact with a sensor 
fusion station. When a fusion station is reachable, the 
harvester sends all of the raw sensor data to the fusion 
station using the directed data dissemination strategy. 
The harvester also disseminates the metadata associated 
with the imagery and video collected by the sensor fields 
in a manner that covers as many nodes as possible. 
 
2.2 Prediction scenario: In this scenario, a team of 
dismounted soldiers are carrying nodes preloaded with 
information relevant to their mission. Once deployed in 
theater, the system will need to automatically retrieve 
new information that is relevant to the team and to each 
member of the team. To this end, any information 
gathered from ground (or other) sensors that are along 
the path being traversed are deemed essential. New data 
may also become available either back at the operations 
center or from some other unit in theater. In long 
duration missions it is also possible to have changes in 
the mission itself and in the orders and consequent 
adjustments to planned activities. In dynamic 
environments, the system must disseminate on-demand 
data in an efficient and timely manner. However, in the 
instance that an environment is observed with degraded 
communications, both the source node and the 
requesting node may be offline or may not have 
sufficient bandwidth to communicate at the request time. 
To compensate for this problem, the system uses a 
learning algorithm to predict the user's requests and 
proactively moves information ahead of time to the 
user's node or to a nearby node, depending on the 
resources available. 
 
2.3 Large objects scenario: Large objects are on-
demand data such as images or videos that are only 
needed some of the time. Generally, they are held by 
gateway nodes until requested. These nodes publish 
large objects spreading their associated metadata in the 
network. The metadata might be received by an analyst 
at a Tactical Operation Center, who might be interested 
in the associated large object and decide to retrieve it. 
While the basic mechanisms to spread the metadata of 
SA data and of directed data are similar, other strategies 
are needed to ensure efficient distribution and storage of 
large objects in the network. Despite DisService’s 
primary purpose not being file sharing, similar 
techniques that enable DisService to achieve timely 
retrieval and balancing of the storage resources are being 
investigated. As the large object is routed back to the 
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Tactical Operation Center, intermediate nodes cache it to 
satisfy other future requests. With this strategy, data that 
is requested more often will become more available over 
time. An alternate strategy is for the gateway node to 
pre-replicate the data when the network is idle, which 
will increase the availability and reduce the latency for 
data access even for the first request. 
 

3. DISSERVICE CAPABILITIES 

DisService provides the capabilities necessary to 
disseminate information between peer-to-peer nodes 
interconnected in a network. The following subsections 
describe the key components: subscription management, 
pushing data, information anticipation, and large object 
dissemination. 
 
3.1 Subscription management:  DisService 
applications disseminate data in the context of a group, 
so they must subscribe to a group before they receive 
any data. They may dynamically subscribe and 
unsubscribe to groups as necessary. Each subscription 
may have an associated priority indicating the 
application's preference among multiple subscriptions. In 
situations where the bandwidth is limited, the priority 
can be used to order the dissemination of data. 
Subscriptions may also request sequenced and/or reliable 
delivery of messages. Messages published by a node, in 
the context of a group, are sequenced. A subscriber may 
request that this sequence be maintained when delivering 
messages to the application. This ensures that messages 
will not be delivered out of order. If reliable delivery is 
requested, missing messages are requested to be 
retransmitted. Sequencing and reliability may be 
combined together. Reliable subscriptions that are not 
sequenced imply that all the messages will be delivered, 
but possibly out of order. On the other hand, unreliable 
but sequenced subscriptions imply that messages may be 
missing, but all the delivered messages will be in 
sequenced order. 
 
3.2 Pushing data: An application wishing to 
disseminate data can use two different approaches: 
pushing data or publishing data to other nodes. With the 
first approach, the data is delivered to applications that 
have subscribed to the corresponding group. On the 
other hand, publishing data implies that only metadata 
describing the data is pushed to subscribing nodes and 
each node that wishes to receive the data has to 
explicitly request it. Messages that have been pushed are 
received and delivered asynchronously to applications. 
Publishing data is normally used for large items, such as 

multimedia objects, which would be too expensive 
(bandwidth-wise) to send to an application without 
ensuring that it really desires to receive the object.  

DisService automatically caches the messages 
received by nodes. Messages may be expired and 
deleted, depending on the actual resources available on 
the node and on parameters of the message such as the 
expiration time, and the history window. The expiration 
time associated with a message indicates a time interval 
since the information was published, and represents the 
amount of time during which the information is relevant. 
The history window indicates the number of previously 
published messages for each group that should be 
cached. Cache replacement strategies play an important 
role when resources are limited. So far, DisService 
implements a simple strategy solely based on the 
expiration time. While more accurate strategies are being 
investigated, DisService leaves the possibility to the 
application to create its own domain-specific cache 
replacement strategy. This can be done by overriding the 
default DataCacheExpirationController (see section 5.3). 

Finally the message priority identifies the 
relative priority of one message with respect to 
other messages being pushed. The priority plays an 
important role when there is not sufficient bandwidth 
to transmit all the requested data. In this situation 
DisService chooses to first transmit data with high 
priority. 
 
3.3 Information anticipation: In an environment with 
degraded communications, the user node may be offline 
or may not have sufficient bandwidth to retrieve the 
information after a user request. Information 
anticipation, where the system can predict the user 
requests and pre-stages the data ahead of time, increases 
information availability. In order to predict what data 
each node will need in the future, the system needs to 
have access to metadata about the users and the data 
currently present in the network. Part of this information 
is stored in the metadata fields associated with each data, 
and part of it in a model of the user context. The 
metadata field is enhanced with additional information 
that describes the content of each data with some 
characteristics relevant in a tactical military 
environment. The user context contains information 
relevant to the local user (for example role and actual 
position) and the mission. This information depends on 
the particular mission in progress, so it can be 
dynamically changed at any time. Given that the system 
has access to the user's context, it can predict the set of 
possible information the user may request. Therefore, the 



 
 

4 of 8 
 

system has a rudimentary form of predictive capability, 
in that it can automatically select certain types of data to 
be pushed to a user. However, these constraints alone 
may not be strong enough to produce acceptable system 
performance. To improve the performance, the system 
needs a learning capability in order to adapt itself to a 
particular user’s preferences. At any time, the system 
accesses the metadata associated with the data currently 
stored in the local cache and infers the history of past 
requests made by the user. After that the system uses a 
modified version of the C4.5 machine learning algorithm 
[6] to look for patterns in usage history and predicts 
which information the user is likely to request in the 
future. 
 
3.4 Large object replication: DisService provides 
replication capability for large objects. Replication is 
performed as a proactive procedure, in order to reduce 
the impact of network partitions on data availability. By 
replicating data, the overall redundancy of data is 
increased in the whole network. This makes DisService 
more resilient to node access problems, since nodes can 
access data even in the presence of network partitions. 
To this end, DisSevice replicates large data objects in the 
network as soon as possible, taking into account the 
current available resources (i.e. bandwidth and memory 
capacities). Large object replication is performed by 
replicating pieces of a large object. In DisService these 
pieces are referred to as chunks. These are smaller and 
can be easily duplicated and transmitted over links 
where disconnections occur frequently. In addition, 
chunk sharing between nodes is easier than large objects 
sharing, since nodes can process and transmit chunks as 
soon as they have been received. In this way large 
objects will be disseminated easily in the network. 
In order to reconstruct the original large objects, 
DisService provides a chunk recovering mechanism to 
reassemble each large object. This mechanism uses some 
functionalities of the Group Manager [1] to do a peer-to-
peer search for nodes which hold chunks that make up 
the desired data object. 
 
4. DISSERVICE ARCHITECTURE AND DESIGN 

DisService provides efficient and peer-to-peer 
dissemination of data without any reliance on centralized 
components. There are no assumptions made about the 
presence of stable network connectivity. Instead, 
DisService dynamically adapts itself to network changes 
and disseminates information as best as possible. Figure 
1 shows the DisService architecture. The DisService 
components are described in the following subsections. 

 

 
Figure 1: DisService Architecture 

4.1 Message Propagation Service: This service 
provides two capabilities for efficient use of bandwidth: 
message consolidation and piggybacking. The first 
capability allows DisService to send multiple individual 
messages that are automatically consolidated into 
network packets in order to minimize the number of 
packets injected into the network. The consolidation 
capability allows DisService to include a delay tolerance 
in each message transmission request. This specifies 
how long the message should be kept in order to 
consolidate it with other messages. In addition message 
consolidation allows DisService to send multiple, small 
messages without having to worry about the number of 
packets being generated. This is particularly important 
for some packet rate limited radios. 
 
4.2 Data Cache: The design choice for DisService is to 
aggressively cache data on every node, limited only by 
the local storage capacity. Therefore, any data that has 
been previously pushed or received by a node is held in 
the Data Cache. This allows the node to readily provide 
the data both to local applications as well as any peer 
nodes that need the data. The current implementation of 
the Data Cache uses the SQLite library [5], a public 
domain embeddable SQL database library. 
 
4.3 Message Transmitter: The Message Transmitter 
handles fragmentation of large messages and controls the 
bandwidth utilization of outgoing traffic. Messages that 
are larger than the Maximum Transmission Unit (MTU) 
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are automatically fragmented. Each message contains a 
header that identifies the portion of the data contained in 
the message. Messages that are transmitted may be rate-
limited in order to not overload the network. When 
multiple messages are awaiting transmission, the 
message priority is used to determine the transmission 
order. 
 
4.4 Incoming Message Handler: Messages received by 
the Message Propagation Service are handled by the 
Incoming Message Handler, which examines the header 
to identify the nature of the message. An incoming 
message may contain payload data or control data. For 
payload data, the handler checks if the whole data is 
present in the current message or the data has been 
fragmented. Fragmented data is handled by the Message 
Reassembler. Before delivering the data to the 
application, the sequencing rules for the subscription are 
checked. If sequencing has been requested, an out of 
order message is not delivered. After that, the message is 
delivered to the correct applications. 

Control messages are handled differently. Two 
types of them are possible. A World State message 
includes information about a neighbor node and is 
handed off to the local World State component. The 
second type is a Data Request message. When a data 
request arrives, the Incoming Message Handler checks 
both the Message Reassembler as well as the Data 
Cache. This because partially received messages are 
stored in the Message Reassembler until they are 
complete before being stored in the Data Cache. In 
situations where only partial data is available, the local 
node will transmit the subset of data that is available. 
This contributes to satisfy the request. 

 
4.5 Message Reassembler: This component takes 
incoming data fragments and reassembles them in the 
correct order. If reliable delivery has been requested by 
the subscribing application, the Message Reassembler 
identifies missing fragments, requests them from other 
nodes, and performs the reassembly procedure when all 
the missing fragments have been received. If an 
application has subscribed to the group with a request for 
sequenced delivery, two possibilities exist. If reliability 
is requested too, messages received out of order are 
buffered until the missing messages are received and 
then delivered in order to the application. If no reliability 
is requested, old messages that are received later are 
simply dropped. That is, delivery of a message with 
sequence number n ensures that no message prior to 
sequence number n will ever be delivered. The Message 
Reassembler periodically checks for missing messages 

or messages that have missing fragments and sends out a 
request to the peers for retransmission of the missing 
fragments. 
 
4.6 World State: The World State maintains the best 
known information about the state of other nodes in the 
network, including the messages that they contain. Given 
the distributed nature of the system, this information 
might not be accurate and up to date. Each node 
maintains its own view of the world in the local World 
State component. As part of the World State, each node 
maintains information about local neighbors and their 
subscriptions, as well as all known remote nodes. The 
information held for a remote node includes the distance 
to the remote node (in terms of the number of network 
hops), the path to the remote node, and the lowest link 
capacity, which limits the overall bandwidth available to 
that node. A sequence number is attached to each World 
State, which is incremented at every change to the World 
State. Periodically each node will broadcast its presence 
and the sequence number of its World State. This 
broadcast is received by all the peer nodes, which may 
request the complete World State if the node is new or if 
the sequence number has been updated. This reduces 
unnecessary transmissions of the World State. 
 
4.7 Proxy Server: The Proxy Server allows multiple 
applications on the same node to utilize DisService. 
Proxy libraries connect to the Proxy Server via TCP 
socket connection, thereby allowing different languages 
to be used for the proxy libraries. The implementation of 
the core DisService uses C++. To date, proxies have 
been implemented using C++, C#, and Java. A client 
application simply utilizes the Proxy Library, which 
transparently manages the connection to the actual 
DisService instance. While applications and proxies 
normally reside on the same node as DisService, this 
architecture also supports remote proxies. This usage 
pattern is useful to support resource constrained devices, 
which may only run the proxy and connect to the actual 
DisService instance elsewhere. For example, small 
sensor nodes may run the proxy and connect to 
DisService running on a sensor gateway node. 
 

5. UNIQUE FEATURES OF DISSERVICE 

DisService design and implementation incorporate some 
unique features, which are highlighted in this section. 
 
5.1 Neighbor Dependent Probabilistic Response 
Model: An important aspect of DisService is that a 
request for data may be received by multiple peers, 



 
 

6 of 8 
 

which act independently from each other. In such cases, 
the receiver may get multiple responses for the same 
data request, wasting network capacity. In order to 
reduce this duplicated traffic, the probability of a node 
responding to a request is computed based on the 
number of neighbors of the requesting node. Each node 
maintains the number of its neighbors. When a node 
transmits a request for data, the request is received by all 
the neighbors. All of them potentially reply and transmit 
duplicate copies of the data. To avoid this, the requesting 
node includes its neighbor number, in the data request. 
Each node will then transmit with a probability that is 
the inverse of the number of neighbors. It is also possible 
that some nodes don’t have the data sought. For instance, 
if just one neighbor has the data, the requesting node 
may not receive the data sought, due to the nature of the 
probabilistic response model. To alleviate this situation, 
when a node sees a repeated request for data, the 
probability measure is ignored and the requested data is 
always transmitted. 
 
5.2 Reliable Reception Instead of Reliable 
Transmission: When reliable data transmission is 
desired, traditional network protocols such as TCP rely 
on the sender to ensure that the data being transmitted is 
received by the recipient. The DisService model differs 
significantly from the point-to-point model assumed by 
TCP. The first difference is that communication in 
DisService is point-to-multipoint: several peer nodes 
may be recipients of some data transmitted by one node. 
The second difference is that each recipient may 
independently request or not request reliable reception of 
data. The third difference is that the set of nodes that are 
reachable may change continuously. For instance, if a 
node is pushing information to another, and the second 
node moves away and loses network connectivity with 
the pusher, the TCP model would result in having the 
pusher node continuously attempting to retransmit data 
to the receiver. In the DisService model, when the 
receiver moves away, the pusher node does not care. 
Eventually, if the receiving node comes in contact again 
with the original pusher or some other node which has 
the messages, then the receiver will request and receive 
the missing messages at that time. Another difference is 
that the recipient node does not need to go back to the 
original transmitting node to get the missing 
information. This is because it may be obtained from any 
other peer node that has the desired information. This is 
an effective strategy for reliable delivery, especially 
when coupled with the design choice to aggressively 
cache as much data as possible at each node. 
 

5.3 Customizable Controllers: A feature of the 
DisService architecture is to enable customizability of 
the default behavior of DisService. To this end, the 
architecture defines three customizable interfaces, which 
may be implemented by a system to modify the default 
behavior of DisService. These interfaces are the 
ForwardingController interface, the 
DataCacheReplicationController interface, and the 
DataCacheExpirationController interface. Default 
implementations are provided for each of these 
interfaces. However, applications and systems that desire 
to modify the default behavior can define their own 
controllers that override one or more of these defaults. 
 

6. PERFORMANCE EVALUATION 

The performance of DisService is evaluated using two 
different experiments. The first experiment measures the 
performance in the context of the data harvesting 
scenario. The second experiment measures the 
performance in the context of disseminating SA data 
(blue force tracking information) between a set of peer 
nodes. In both cases, the baseline performance was 
obtained using TCP/UDP-based applications. NISTNet 
[8] was used to control the reliability of network, 
varying from a completely reliable network to a network 
with a 20% packet loss probability. While DisService 
still functions at higher packet loss rates, TCP was not 
practical with a 30% or higher packet loss rate, given its 
exponential back-off algorithm. 
 
6.1 Data Harvesting Experiment: This experiment 
consisted of three nodes – a sensor gateway, a data 
harvester, and a receiver, as shown in Figure 2. The 
sensor gateway holds gathered sensor data. Periodically, 
a harvester node comes into contact with the sensor 
gateway and retrieves all acquired data. When the 
harvester subsequently comes into contact with the 
receiver, the gathered data is uploaded.  
 

 
Figure 2: Data Harvesting Experiment Scenario 
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The results are shown in Tables 1 and 2. Three 
different link bandwidths were used – 10 Mbps, 500 
Kbps, and 250 Kbps. Table 1 shows the overhead for 
each approach. Table 2 shows the time for the data 
transfer to be completed. In all cases, the gateway node 
contained 1284 KB of data that was harvested and 
delivered to the receiver. 

As the results show, DisService does have more 
overhead than the TCP-based application. Note that this 
comparison is not entirely fair, since the TCP-based 
application is simplistic. For example, when the 
Harvester comes into contact with the Gateway, the 
Harvester simply gathers all available data. No protocols 
exist that check and verify whether the data has already 
been acquired (for example, as part of a previous 
mission). Hence the TCP results are not necessarily 
useful for direct comparison, but provide a baseline case 
nonetheless. Also note that the TCP-based application 
does not perform well when the network reliability is 
80% or lower, which is quite possible with wireless 
tactical networks. 

Table 1: DisService Performance (Overhead) for 
Sensor Harvesting 

DS  TCP  DS  TCP DS  TCP
Reliability

100% 10.97 6.32 8.63 6.3 9.08 8.67
90% 25.5 21.4 33.35 20.62 51.99 21.55
80% 39.71 42.94 58.2 35.16 106.53
70% 57.21 80.05 144.39
60% 83.6 86.57 167.39
50% 129.43 129.35 161.34

Overhead (Percentage)

(10 Mbps Band.) (250 Kbps Band.)(500 Kbps Band.)

 
 

In the case of the completion time measure (Table 
2), the results show that the TCP-based application 
outperforms DisService only in the case of a fully 
reliable network, and with 90% reliability with a 10 
Mbps connection. In all other cases, DisService 
outperforms TCP. In fact, when reliability was less than 
80%, the TCP test was terminated if it failed to complete 
within 30 minutes (1800 seconds). 

 
6.2 Data Dissemination Experiment: This experiment 
consisted of eight nodes exchanging SA data in a peer-
to-peer configuration. The scenario is shown in Figure 3. 
Each node generates a 512 byte message at a rate of 1 
Hz that is received by all the other nodes. 

The TCP-based application in this case used a 
centralized redirector that receives messages from each 
node and reflects it back to every other node. This 
architecture is based on the Tactical Object Server 

(TOS) used by the Army Research Laboratory. The 
DisService application being peer-to-peer does not 
require any centralized server. Also, to make the 
comparison fair, the no network disconnection was 
introduced in this scenario, since the TCP application 
would not have been able to cope with the disconnection 
and would result in lost messages. 
 

Table 2: DisService Performance (Completion Time) for 
Sensor Harvesting 

DS  TCP  DS  TCP DS  TCP
Reliability

100% 10.65 7.25 29.23 27.87 50.85 47.81
90% 28.44 21.87 46.05 50.03 63.75 73.86
80% 50.78 497.04 51.39 1485.56 81.37
70% 70.18 77 97.49
60% 102.87 119.48 119.92
50% 143.61 170.17 142.5

Completion Time (Seconds)

(10 Mbps Band.) (250 Kbps Band.)(500 Kbps Band.)

 
 

 
Figure 3: Data Dissemination Experiment Scenario 

The results are shown in Table 3 and highlight the 
advantage of the peer-to-peer nature of DisService. The 
TCP-based application has to transmit each update eight 
times over the network, once from the node generating 
the message to the centralized redirector, and seven 
times from the redirector to the each of the other nodes. 
The DisService-based application performs better since 
it uses broadcast to reach as many node as possible 
during each transmission, and only retransmit when 
nodes do not receive the message directly. 

Table 3: DisService Performance (Bandwidth) for 
Data Dissemination 

Reliability DS (KB) TCP (KB) DS (KB/s) TCP (KB/s)
100% 6101.68 23073.39 9.71 38.44
90% 10847.51 25956.77 17.16 43.20
80% 13234.57 27945.89 20.73 36.12

(Total Bandwidth) (Bandwidth Rate)
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7. CONCLUSIONS AND FUTURE WORK 

This paper described the motivation, design, and 
implementation of DisService – a peer-to-peer data 
dissemination component. DisService opportunistically 
exploits storage and communications to be disruption 
tolerant and increase availability of data in the network. 
Initial evaluations of DisService in the context of data 
harvesting and dissemination of SA data show promising 
results. 
Future planned enhancements to DisService include 
optimizing the replication and forwarding strategies to 
explicitly support multiple dissemination patterns (any 
combination of one|few|many publishers to 
one|few|many subscribers) and adding supports for 
predicates to be attached to subscriptions. DisService is 
also being extended to incorporate learning mechanisms 
to predict information needs of users in order to pre-
stage the information. 
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