
1 of 8

DISSERVICE: A PEER-TO-PEER DISRUPTION TOLERANT DISSEMINATION SERVICE

Niranjan Suri1, Giacomo Benincasa1, Steve Choy2, Stefano Formaggi1, Mirko Gilioli1,
Matteo Interlandi1, Jesse Kovach2, Silvia Rota1, Robert Winkler2

1Florida Institute for Human & Machine Cognition, Pensacola, FL
2U.S. Army Research Laboratory, Adelphi, MD

ABSTRACT

Tactical networking environments demand reliable,
robust, and efficient approaches to disseminating
information that are tolerant to unreliable and
bandwidth-constrained networks. This paper describes
DisService, an Agile Computing approach to
information dissemination that opportunistically
discovers and exploits excess communications, storage,
and processing capacity in a distributed network to
improve the performance of information dissemination.
DisService is disruption tolerant and caches data
throughout the network by replicating the data. Nodes
subscribe to hierarchically organized groups.
Information is published in the context of a group, and
may also be tagged to differentiate between multiple
types of data (e.g., blue-force tracking, sensor data,
logistics, or other runtime information). Each node
operates in a distributed, peer-to-peer manner while
processing and communicating the published
information and requested subscriptions from
neighboring nodes. Information is disseminated using an
efficient combination of push and pull, depending on the
number of subscribers, the capacity of the network, the
stability of nodes in the network, and the predicted
information needs of users. Finally, DisService also
supports efficient dissemination of large data by
replicating and scattering fragments throughout the
network. These features combine to realize an effective
approach to information dissemination for tactical
networks.

1. INTRODUCTION

Tactical military environments are often highly dynamic
and consist of fixed and mobile nodes such as
unattended ground sensors (UGS), robots, dismounted
soldiers, ground vehicles, and airborne nodes such as
UAVs. These nodes are often interconnected with
wireless networks that result in unreliable and
bandwidth-constrained links. Moreover, power
constraints, especially for battery-powered devices,
require efficient use of processing, storage, and
communications. In spite of the challenges posed by
these environments, users demand reliable, robust, and
efficient approaches to information dissemination.

This paper presents the design and implementation
of DisService – an information dissemination service
that is part of the Agile Computing Middleware.
DisService opportunistically discovers and exploits
excess communications, storage, and processing capacity
in a distributed network to improve the performance of
information dissemination. It supports the storage and
forwarding of data and caches data throughout the
network, thereby making it disruption tolerant and
improving the availability of data. Information is
published in the context of a group, and may also be
tagged to differentiate between multiple types of data
(e.g., blue-force tracking, sensor data, logistics, or other
runtime information). Each node in the network running
DisService operates in a distributed, peer-to-peer manner
while processing and communicating the published
information and requested subscriptions from
neighboring nodes. DisService disseminates information
using an efficient combination of push and pull
mechanisms, depending on the number of subscribers,
the capacity of the network, and the stability of nodes in
the network. DisService takes into account the user's
preferences in order to anticipate information requests as
well. In addition it proactively fragments large data
objects and replicates the fragments in order to improve
sharing and increase availability of large data objects.

This paper is organized as follows. Section 2
presents three motivating scenarios for data
dissemination in a tactical environment. Section 3
describes the DisService capabilities. Section 4 presents
the DisService architecture and design. Section 5
highlights the unique design features of DisService.
Section 6 presents the evaluation of DisService
performance. Finally, section 7 presents conclusions and
discusses future work.

2. MOTIVATING SCENARIOS

The emerging tactical environment consists of assets
with vastly different computing, communications,
storage, and survivability capabilities. At one extreme,
low-power miniaturized Unattended Ground Sensors
(UGS) offer minimal computing, communications, and
storage capabilities and can survive months or even
years in a hostile environment. At the other extreme,
large tactical vehicles are capable of carrying racks of

2 of 8

high-performance servers and fast long-range radios but
are large, loud, and can survive only as long as their fuel
supply. These nodes have network connectivity that is
limited and intermittent, caused by lack of radio
coverage, resource contention, or the desire to operate in
a clandestine manner and maintain radio silence. Given
these constraints, providing a high operational time in
tactical missions is a significant challenge. While on a
mission, soldiers need to access a variety of information
including maps, aerial reconnaissance, various sensor
data, intelligence reports, and blue and red force
tracking. Some of this data may be preloaded onto the
nodes and some may become available later. This
information has been classified as follows:

Situational awareness data needs to be
disseminated as widely as possible throughout the
network while minimizing redundant transmissions and
latency using an intelligent flooding strategy. SA data
includes blue-force tracking data showing the location
and intent of friendly forces as well as fused sensor data
that has been used to generate enemy location reports.

Directed data is of interest to only a single node or
a small number of nodes. This type of data needs to be
delivered to its destination as quickly and efficiently as
possible. This data may also need to be held for future
transmission if the destination is currently unreachable.
Directed data can include raw sensor data which needs to
be processed and correlated with data from other sensors
at a fusion station.

On-demand data is data that is large or otherwise
problematic to transmit and is only of interest to some
nodes some of the time. To minimize impact on the
network, this data should be delivered only to interested
nodes on an as-needed basis. Metadata describing each
data item needs to be disseminated as situational
awareness data. This class of data includes images and
video collected by sensors, unmanned vehicles, or
analysts.

These three classes of information are treated in the
following evaluation scenarios:

2.1 Harvester scenario: In this scenario, a number of
different sensor fields connected by low-bandwidth,
power-saving radios are deployed within an area of
interest. While most of these devices have extremely
limited storage and communication capabilities, one is
designated to be a gateway and is equipped with greater
storage and communication capabilities. As data is
collected by each of the sensors within the field, it is
directed to the gateway where it is held until a harvester
(potentially residing on a ground vehicle or UAV) comes
within range to collect the data. The sensor gateway then

dumps all of the sensor data (which consists of both raw
sensor detections and multimedia images or video) to the
harvester. The harvester, equipped with extra storage and
long-range radios, is often in contact with a sensor
fusion station. When a fusion station is reachable, the
harvester sends all of the raw sensor data to the fusion
station using the directed data dissemination strategy.
The harvester also disseminates the metadata associated
with the imagery and video collected by the sensor fields
in a manner that covers as many nodes as possible.

2.2 Prediction scenario: In this scenario, a team of
dismounted soldiers are carrying nodes preloaded with
information relevant to their mission. Once deployed in
theater, the system will need to automatically retrieve
new information that is relevant to the team and to each
member of the team. To this end, any information
gathered from ground (or other) sensors that are along
the path being traversed are deemed essential. New data
may also become available either back at the operations
center or from some other unit in theater. In long
duration missions it is also possible to have changes in
the mission itself and in the orders and consequent
adjustments to planned activities. In dynamic
environments, the system must disseminate on-demand
data in an efficient and timely manner. However, in the
instance that an environment is observed with degraded
communications, both the source node and the
requesting node may be offline or may not have
sufficient bandwidth to communicate at the request time.
To compensate for this problem, the system uses a
learning algorithm to predict the user's requests and
proactively moves information ahead of time to the
user's node or to a nearby node, depending on the
resources available.

2.3 Large objects scenario: Large objects are on-
demand data such as images or videos that are only
needed some of the time. Generally, they are held by
gateway nodes until requested. These nodes publish
large objects spreading their associated metadata in the
network. The metadata might be received by an analyst
at a Tactical Operation Center, who might be interested
in the associated large object and decide to retrieve it.
While the basic mechanisms to spread the metadata of
SA data and of directed data are similar, other strategies
are needed to ensure efficient distribution and storage of
large objects in the network. Despite DisService’s
primary purpose not being file sharing, similar
techniques that enable DisService to achieve timely
retrieval and balancing of the storage resources are being
investigated. As the large object is routed back to the

3 of 8

Tactical Operation Center, intermediate nodes cache it to
satisfy other future requests. With this strategy, data that
is requested more often will become more available over
time. An alternate strategy is for the gateway node to
pre-replicate the data when the network is idle, which
will increase the availability and reduce the latency for
data access even for the first request.

3. DISSERVICE CAPABILITIES

DisService provides the capabilities necessary to
disseminate information between peer-to-peer nodes
interconnected in a network. The following subsections
describe the key components: subscription management,
pushing data, information anticipation, and large object
dissemination.

3.1 Subscription management: DisService
applications disseminate data in the context of a group,
so they must subscribe to a group before they receive
any data. They may dynamically subscribe and
unsubscribe to groups as necessary. Each subscription
may have an associated priority indicating the
application's preference among multiple subscriptions. In
situations where the bandwidth is limited, the priority
can be used to order the dissemination of data.
Subscriptions may also request sequenced and/or reliable
delivery of messages. Messages published by a node, in
the context of a group, are sequenced. A subscriber may
request that this sequence be maintained when delivering
messages to the application. This ensures that messages
will not be delivered out of order. If reliable delivery is
requested, missing messages are requested to be
retransmitted. Sequencing and reliability may be
combined together. Reliable subscriptions that are not
sequenced imply that all the messages will be delivered,
but possibly out of order. On the other hand, unreliable
but sequenced subscriptions imply that messages may be
missing, but all the delivered messages will be in
sequenced order.

3.2 Pushing data: An application wishing to
disseminate data can use two different approaches:
pushing data or publishing data to other nodes. With the
first approach, the data is delivered to applications that
have subscribed to the corresponding group. On the
other hand, publishing data implies that only metadata
describing the data is pushed to subscribing nodes and
each node that wishes to receive the data has to
explicitly request it. Messages that have been pushed are
received and delivered asynchronously to applications.
Publishing data is normally used for large items, such as

multimedia objects, which would be too expensive
(bandwidth-wise) to send to an application without
ensuring that it really desires to receive the object.

DisService automatically caches the messages
received by nodes. Messages may be expired and
deleted, depending on the actual resources available on
the node and on parameters of the message such as the
expiration time, and the history window. The expiration
time associated with a message indicates a time interval
since the information was published, and represents the
amount of time during which the information is relevant.
The history window indicates the number of previously
published messages for each group that should be
cached. Cache replacement strategies play an important
role when resources are limited. So far, DisService
implements a simple strategy solely based on the
expiration time. While more accurate strategies are being
investigated, DisService leaves the possibility to the
application to create its own domain-specific cache
replacement strategy. This can be done by overriding the
default DataCacheExpirationController (see section 5.3).

Finally the message priority identifies the
relative priority of one message with respect to
other messages being pushed. The priority plays an
important role when there is not sufficient bandwidth
to transmit all the requested data. In this situation
DisService chooses to first transmit data with high
priority.

3.3 Information anticipation: In an environment with
degraded communications, the user node may be offline
or may not have sufficient bandwidth to retrieve the
information after a user request. Information
anticipation, where the system can predict the user
requests and pre-stages the data ahead of time, increases
information availability. In order to predict what data
each node will need in the future, the system needs to
have access to metadata about the users and the data
currently present in the network. Part of this information
is stored in the metadata fields associated with each data,
and part of it in a model of the user context. The
metadata field is enhanced with additional information
that describes the content of each data with some
characteristics relevant in a tactical military
environment. The user context contains information
relevant to the local user (for example role and actual
position) and the mission. This information depends on
the particular mission in progress, so it can be
dynamically changed at any time. Given that the system
has access to the user's context, it can predict the set of
possible information the user may request. Therefore, the

4 of 8

system has a rudimentary form of predictive capability,
in that it can automatically select certain types of data to
be pushed to a user. However, these constraints alone
may not be strong enough to produce acceptable system
performance. To improve the performance, the system
needs a learning capability in order to adapt itself to a
particular user’s preferences. At any time, the system
accesses the metadata associated with the data currently
stored in the local cache and infers the history of past
requests made by the user. After that the system uses a
modified version of the C4.5 machine learning algorithm
[6] to look for patterns in usage history and predicts
which information the user is likely to request in the
future.

3.4 Large object replication: DisService provides
replication capability for large objects. Replication is
performed as a proactive procedure, in order to reduce
the impact of network partitions on data availability. By
replicating data, the overall redundancy of data is
increased in the whole network. This makes DisService
more resilient to node access problems, since nodes can
access data even in the presence of network partitions.
To this end, DisSevice replicates large data objects in the
network as soon as possible, taking into account the
current available resources (i.e. bandwidth and memory
capacities). Large object replication is performed by
replicating pieces of a large object. In DisService these
pieces are referred to as chunks. These are smaller and
can be easily duplicated and transmitted over links
where disconnections occur frequently. In addition,
chunk sharing between nodes is easier than large objects
sharing, since nodes can process and transmit chunks as
soon as they have been received. In this way large
objects will be disseminated easily in the network.
In order to reconstruct the original large objects,
DisService provides a chunk recovering mechanism to
reassemble each large object. This mechanism uses some
functionalities of the Group Manager [1] to do a peer-to-
peer search for nodes which hold chunks that make up
the desired data object.

4. DISSERVICE ARCHITECTURE AND DESIGN

DisService provides efficient and peer-to-peer
dissemination of data without any reliance on centralized
components. There are no assumptions made about the
presence of stable network connectivity. Instead,
DisService dynamically adapts itself to network changes
and disseminates information as best as possible. Figure
1 shows the DisService architecture. The DisService
components are described in the following subsections.

Figure 1: DisService Architecture

4.1 Message Propagation Service: This service
provides two capabilities for efficient use of bandwidth:
message consolidation and piggybacking. The first
capability allows DisService to send multiple individual
messages that are automatically consolidated into
network packets in order to minimize the number of
packets injected into the network. The consolidation
capability allows DisService to include a delay tolerance
in each message transmission request. This specifies
how long the message should be kept in order to
consolidate it with other messages. In addition message
consolidation allows DisService to send multiple, small
messages without having to worry about the number of
packets being generated. This is particularly important
for some packet rate limited radios.

4.2 Data Cache: The design choice for DisService is to
aggressively cache data on every node, limited only by
the local storage capacity. Therefore, any data that has
been previously pushed or received by a node is held in
the Data Cache. This allows the node to readily provide
the data both to local applications as well as any peer
nodes that need the data. The current implementation of
the Data Cache uses the SQLite library [5], a public
domain embeddable SQL database library.

4.3 Message Transmitter: The Message Transmitter
handles fragmentation of large messages and controls the
bandwidth utilization of outgoing traffic. Messages that
are larger than the Maximum Transmission Unit (MTU)

5 of 8

are automatically fragmented. Each message contains a
header that identifies the portion of the data contained in
the message. Messages that are transmitted may be rate-
limited in order to not overload the network. When
multiple messages are awaiting transmission, the
message priority is used to determine the transmission
order.

4.4 Incoming Message Handler: Messages received by
the Message Propagation Service are handled by the
Incoming Message Handler, which examines the header
to identify the nature of the message. An incoming
message may contain payload data or control data. For
payload data, the handler checks if the whole data is
present in the current message or the data has been
fragmented. Fragmented data is handled by the Message
Reassembler. Before delivering the data to the
application, the sequencing rules for the subscription are
checked. If sequencing has been requested, an out of
order message is not delivered. After that, the message is
delivered to the correct applications.

Control messages are handled differently. Two
types of them are possible. A World State message
includes information about a neighbor node and is
handed off to the local World State component. The
second type is a Data Request message. When a data
request arrives, the Incoming Message Handler checks
both the Message Reassembler as well as the Data
Cache. This because partially received messages are
stored in the Message Reassembler until they are
complete before being stored in the Data Cache. In
situations where only partial data is available, the local
node will transmit the subset of data that is available.
This contributes to satisfy the request.

4.5 Message Reassembler: This component takes
incoming data fragments and reassembles them in the
correct order. If reliable delivery has been requested by
the subscribing application, the Message Reassembler
identifies missing fragments, requests them from other
nodes, and performs the reassembly procedure when all
the missing fragments have been received. If an
application has subscribed to the group with a request for
sequenced delivery, two possibilities exist. If reliability
is requested too, messages received out of order are
buffered until the missing messages are received and
then delivered in order to the application. If no reliability
is requested, old messages that are received later are
simply dropped. That is, delivery of a message with
sequence number n ensures that no message prior to
sequence number n will ever be delivered. The Message
Reassembler periodically checks for missing messages

or messages that have missing fragments and sends out a
request to the peers for retransmission of the missing
fragments.

4.6 World State: The World State maintains the best
known information about the state of other nodes in the
network, including the messages that they contain. Given
the distributed nature of the system, this information
might not be accurate and up to date. Each node
maintains its own view of the world in the local World
State component. As part of the World State, each node
maintains information about local neighbors and their
subscriptions, as well as all known remote nodes. The
information held for a remote node includes the distance
to the remote node (in terms of the number of network
hops), the path to the remote node, and the lowest link
capacity, which limits the overall bandwidth available to
that node. A sequence number is attached to each World
State, which is incremented at every change to the World
State. Periodically each node will broadcast its presence
and the sequence number of its World State. This
broadcast is received by all the peer nodes, which may
request the complete World State if the node is new or if
the sequence number has been updated. This reduces
unnecessary transmissions of the World State.

4.7 Proxy Server: The Proxy Server allows multiple
applications on the same node to utilize DisService.
Proxy libraries connect to the Proxy Server via TCP
socket connection, thereby allowing different languages
to be used for the proxy libraries. The implementation of
the core DisService uses C++. To date, proxies have
been implemented using C++, C#, and Java. A client
application simply utilizes the Proxy Library, which
transparently manages the connection to the actual
DisService instance. While applications and proxies
normally reside on the same node as DisService, this
architecture also supports remote proxies. This usage
pattern is useful to support resource constrained devices,
which may only run the proxy and connect to the actual
DisService instance elsewhere. For example, small
sensor nodes may run the proxy and connect to
DisService running on a sensor gateway node.

5. UNIQUE FEATURES OF DISSERVICE

DisService design and implementation incorporate some
unique features, which are highlighted in this section.

5.1 Neighbor Dependent Probabilistic Response
Model: An important aspect of DisService is that a
request for data may be received by multiple peers,

6 of 8

which act independently from each other. In such cases,
the receiver may get multiple responses for the same
data request, wasting network capacity. In order to
reduce this duplicated traffic, the probability of a node
responding to a request is computed based on the
number of neighbors of the requesting node. Each node
maintains the number of its neighbors. When a node
transmits a request for data, the request is received by all
the neighbors. All of them potentially reply and transmit
duplicate copies of the data. To avoid this, the requesting
node includes its neighbor number, in the data request.
Each node will then transmit with a probability that is
the inverse of the number of neighbors. It is also possible
that some nodes don’t have the data sought. For instance,
if just one neighbor has the data, the requesting node
may not receive the data sought, due to the nature of the
probabilistic response model. To alleviate this situation,
when a node sees a repeated request for data, the
probability measure is ignored and the requested data is
always transmitted.

5.2 Reliable Reception Instead of Reliable
Transmission: When reliable data transmission is
desired, traditional network protocols such as TCP rely
on the sender to ensure that the data being transmitted is
received by the recipient. The DisService model differs
significantly from the point-to-point model assumed by
TCP. The first difference is that communication in
DisService is point-to-multipoint: several peer nodes
may be recipients of some data transmitted by one node.
The second difference is that each recipient may
independently request or not request reliable reception of
data. The third difference is that the set of nodes that are
reachable may change continuously. For instance, if a
node is pushing information to another, and the second
node moves away and loses network connectivity with
the pusher, the TCP model would result in having the
pusher node continuously attempting to retransmit data
to the receiver. In the DisService model, when the
receiver moves away, the pusher node does not care.
Eventually, if the receiving node comes in contact again
with the original pusher or some other node which has
the messages, then the receiver will request and receive
the missing messages at that time. Another difference is
that the recipient node does not need to go back to the
original transmitting node to get the missing
information. This is because it may be obtained from any
other peer node that has the desired information. This is
an effective strategy for reliable delivery, especially
when coupled with the design choice to aggressively
cache as much data as possible at each node.

5.3 Customizable Controllers: A feature of the
DisService architecture is to enable customizability of
the default behavior of DisService. To this end, the
architecture defines three customizable interfaces, which
may be implemented by a system to modify the default
behavior of DisService. These interfaces are the
ForwardingController interface, the
DataCacheReplicationController interface, and the
DataCacheExpirationController interface. Default
implementations are provided for each of these
interfaces. However, applications and systems that desire
to modify the default behavior can define their own
controllers that override one or more of these defaults.

6. PERFORMANCE EVALUATION

The performance of DisService is evaluated using two
different experiments. The first experiment measures the
performance in the context of the data harvesting
scenario. The second experiment measures the
performance in the context of disseminating SA data
(blue force tracking information) between a set of peer
nodes. In both cases, the baseline performance was
obtained using TCP/UDP-based applications. NISTNet
[8] was used to control the reliability of network,
varying from a completely reliable network to a network
with a 20% packet loss probability. While DisService
still functions at higher packet loss rates, TCP was not
practical with a 30% or higher packet loss rate, given its
exponential back-off algorithm.

6.1 Data Harvesting Experiment: This experiment
consisted of three nodes – a sensor gateway, a data
harvester, and a receiver, as shown in Figure 2. The
sensor gateway holds gathered sensor data. Periodically,
a harvester node comes into contact with the sensor
gateway and retrieves all acquired data. When the
harvester subsequently comes into contact with the
receiver, the gathered data is uploaded.

Figure 2: Data Harvesting Experiment Scenario

7 of 8

The results are shown in Tables 1 and 2. Three
different link bandwidths were used – 10 Mbps, 500
Kbps, and 250 Kbps. Table 1 shows the overhead for
each approach. Table 2 shows the time for the data
transfer to be completed. In all cases, the gateway node
contained 1284 KB of data that was harvested and
delivered to the receiver.

As the results show, DisService does have more
overhead than the TCP-based application. Note that this
comparison is not entirely fair, since the TCP-based
application is simplistic. For example, when the
Harvester comes into contact with the Gateway, the
Harvester simply gathers all available data. No protocols
exist that check and verify whether the data has already
been acquired (for example, as part of a previous
mission). Hence the TCP results are not necessarily
useful for direct comparison, but provide a baseline case
nonetheless. Also note that the TCP-based application
does not perform well when the network reliability is
80% or lower, which is quite possible with wireless
tactical networks.

Table 1: DisService Performance (Overhead) for
Sensor Harvesting

DS TCP DS TCP DS TCP
Reliability

100% 10.97 6.32 8.63 6.3 9.08 8.67
90% 25.5 21.4 33.35 20.62 51.99 21.55
80% 39.71 42.94 58.2 35.16 106.53
70% 57.21 80.05 144.39
60% 83.6 86.57 167.39
50% 129.43 129.35 161.34

Overhead (Percentage)

(10 Mbps Band.) (250 Kbps Band.)(500 Kbps Band.)

In the case of the completion time measure (Table
2), the results show that the TCP-based application
outperforms DisService only in the case of a fully
reliable network, and with 90% reliability with a 10
Mbps connection. In all other cases, DisService
outperforms TCP. In fact, when reliability was less than
80%, the TCP test was terminated if it failed to complete
within 30 minutes (1800 seconds).

6.2 Data Dissemination Experiment: This experiment
consisted of eight nodes exchanging SA data in a peer-
to-peer configuration. The scenario is shown in Figure 3.
Each node generates a 512 byte message at a rate of 1
Hz that is received by all the other nodes.

The TCP-based application in this case used a
centralized redirector that receives messages from each
node and reflects it back to every other node. This
architecture is based on the Tactical Object Server

(TOS) used by the Army Research Laboratory. The
DisService application being peer-to-peer does not
require any centralized server. Also, to make the
comparison fair, the no network disconnection was
introduced in this scenario, since the TCP application
would not have been able to cope with the disconnection
and would result in lost messages.

Table 2: DisService Performance (Completion Time) for
Sensor Harvesting

DS TCP DS TCP DS TCP
Reliability

100% 10.65 7.25 29.23 27.87 50.85 47.81
90% 28.44 21.87 46.05 50.03 63.75 73.86
80% 50.78 497.04 51.39 1485.56 81.37
70% 70.18 77 97.49
60% 102.87 119.48 119.92
50% 143.61 170.17 142.5

Completion Time (Seconds)

(10 Mbps Band.) (250 Kbps Band.)(500 Kbps Band.)

Figure 3: Data Dissemination Experiment Scenario

The results are shown in Table 3 and highlight the
advantage of the peer-to-peer nature of DisService. The
TCP-based application has to transmit each update eight
times over the network, once from the node generating
the message to the centralized redirector, and seven
times from the redirector to the each of the other nodes.
The DisService-based application performs better since
it uses broadcast to reach as many node as possible
during each transmission, and only retransmit when
nodes do not receive the message directly.

Table 3: DisService Performance (Bandwidth) for
Data Dissemination

Reliability DS (KB) TCP (KB) DS (KB/s) TCP (KB/s)
100% 6101.68 23073.39 9.71 38.44
90% 10847.51 25956.77 17.16 43.20
80% 13234.57 27945.89 20.73 36.12

(Total Bandwidth) (Bandwidth Rate)

8 of 8

7. CONCLUSIONS AND FUTURE WORK

This paper described the motivation, design, and
implementation of DisService – a peer-to-peer data
dissemination component. DisService opportunistically
exploits storage and communications to be disruption
tolerant and increase availability of data in the network.
Initial evaluations of DisService in the context of data
harvesting and dissemination of SA data show promising
results.
Future planned enhancements to DisService include
optimizing the replication and forwarding strategies to
explicitly support multiple dissemination patterns (any
combination of one|few|many publishers to
one|few|many subscribers) and adding supports for
predicates to be attached to subscriptions. DisService is
also being extended to incorporate learning mechanisms
to predict information needs of users in order to pre-
stage the information.

8. ACKNOWLEDGEMENTS

This work is supported in part by the U.S. Army
Research Laboratory under Cooperative Agreement
W911NF-04-2-0013, by the U.S. Army Research
Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement DAAD19-01-2-0009,
and by the Office of Naval Research under grant
N00014-09-1-0012.

9. REFERENCES

[1] Suri N., Rebeschini M., Breedy M., Carvalho M.,
and Arguedas M. Resource and Service Discovery in
Wireless Ad-Hoc Networks with Agile Computing. In
Proceedings of the 2006 IEEE Military Communications
Conference (MILCOM 2006), October 2006,
Washington D.C.

[2] Tortonesi M., Stefanelli C., Suri N., Arguedas M.,
and Breedy M. Mockets: A Novel Message-oriented
Communication Middleware for the Wireless Internet, in
Proceedings of International Conference on Wireless
Information Networks and Systems (WINSYS 2006),
Setùbal, Portugal, August 2006.

[3] Carvalho M., Suri N., Arguedas M. (2005) Mobile
Agent-based Communications Middleware for data
Streaming in the Battle field. In Proceedings of the 2005
IEEE Military Communications Conference (MILCOM
2005), October 2005, Atlantic City, New Jersey.

[4] Suri N., Marcon M., Quitadamo R., Rebeschini M.,
Arguedas M., Stabellini S., Tortonesi M., Stefanelli C.
An Adaptive and Efficient Peer-to-Peer Service-oriented
Architecture for MANET Environments with Agile
Computing. In Proceedings of the second IEEE
Workshop on Autonomic Computing and Network
Management (ACNM’08).

[5] SQLite Relational Database Library. Online
reference: http://www.hwaci.com/sw/sqlite/.

[6] Quinlan R. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., 2004.

[7] Nlake C., Keogh E., and Merrz C. UCI Repository of
Machine Learning, 2007. Online reference:
http://archive.ics.uci.edu/ml/.

[8] Carson M., Santay D. NIST Net – A Linux-based
Network Emulation Tool. National Institute of Standars
and Technology.

