
A meta-language for MDX queries in eLog
Business Solution

Sonia Bergamaschi #1, Matteo Interlandi #2,Mario Longo ∗3, Laura Po #4, Maurizio Vincini #5

Department of Information Engineering, University of Modena and Reggio Emilia
via Vignolese 905, 41125 Modena, Italy
1 sonia.bergamaschi@unimore.it
2 matteo.interlandi@unimore.it

4 laura.po@unimore.it
5 maurizio.vincini@unimore.it

∗ eBilling S.p.A.
Viale Virgilio 54/a, 41123 Modena, Italy

3 mlongo@ebilling.it

Abstract—The adoption of business intelligence technology
in industries is growing rapidly. Business managers are not
satisfied with ad hoc and static reports and they ask for more
flexible and easy to use data analysis tools. Recently, application
interfaces that expand the range of operations available to the
user, hiding the underlying complexity, have been developed. The
paper presents eLog, a business intelligence solution designed
and developed in collaboration between the database group of
the University of Modena and Reggio Emilia and eBilling, an
Italian SME supplier of solutions for the design, production and
automation of documentary processes for top Italian companies.

eLog enables business managers to define OLAP reports by
means of a web interface and to customize analysis indicators
adopting a simple meta-language. The framework translates the
user’s reports into MDX queries and is able to automatically
select the data cube suitable for each query.

Over 140 medium and large companies have exploited the
technological services of eBilling S.p.A. to manage their docu-
ments flows. In particular, eLog services have been used by the
major media and telecommunications Italian companies and their
foreign annex, such as Sky, Mediaset, H3G, Tim Brazil etc. The
largest customer can provide up to 30 millions mail pieces within
6 months (about 200 GB of data in the relational DBMS). In a
period of 18 months, eLog could reach 150 millions mail pieces
(1 TB of data) to handle.

I. INTRODUCTION

During the last decade Data Warehousing and Business

Intelligence become key technologies for storing, analyzing

and navigating business processes, providing managers and

decision makers with OLAP [9] tools. OLAP is the most

popular way to exploit information in a data warehouse, and

it gives to end-users the opportunity to analyze and explore

data interactively on the basis of the multidimensional model.

Many commercial OLAP tools use languages, such as MDX

(MultiDimensional eXpressions) [11]. An MDX expression

returns a multidimensional result set that the user can navigate

according to different viewpoints and at different levels of

detail. MDX is very powerful and effective for IT managers,

but it is unfeasible for unskilled users. On the other side,

static predefined reports are easy to understand for business

managers but are not flexible.

The approach we follow in eLog is intermediate between

static reporting and OLAP, it is called semi-static reporting.
In a semi-static report, users can follow a limited set of

navigation paths. This approach provides some unquestionable

advantages: (1) users need less skills to use data models and

analysis tools than the ones needed for OLAP systems; (2) it is

avoided the risk of achieving inconsistent or incorrect analysis

results because of any misuse of aggregation operators; (3)

posing constraints on the allowed analysis makes it possible

to prevent users from unwillingly slowing down the system

whenever they formulate heavy-demanding queries [7].

eLog is a Decision Support System (DSS) provided as a

Software as a Service (SaaS) specifically developed for the

document management traceability, optimization and analysis.

The first version of eLog allowed business managers to select

the required report starting from a predefined list, and, in

case, to export the result in spreadsheet format. This paper

outlines the improvements reached by the eLog new version,

which allows to move from a transactional system to a

multidimensional approach. With the new version, the user can

dynamically create, save and share with other users his own

reports. The MDXGenerator component acts as the middle

layer between the framework and the OLAP engine, converting

the reports requested by the business manager through a

GUI, into MDX queries executed on the OLAP engine. In

addition, eLog provides a simple and intuitive meta-language

that defines new indicators or new aggregate functions for

custom queries. Another functionality implemented in eLog

is the selection, among all the cubes available in the data

warehouse, of the optimal cube for the execution of the query.

Using eLog, the decision maker is autonomous in the process

of creating and managing new analysis, based on the entire set

of measures and dimensions available in the underneath fact

tables.

The paper is structured as follow. Section II presents a

general overview of eLog, Section III contains the eLog case

study we designed to explain how our system works. Section

IV describes the Data Analysis service of eLog and Section

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.100

1417

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.100

1417

Fig. 1. eLog documents flow

V depicts the conceptualization of schemas and queries we

designed in order to decouple the GUI and the back-end.

Section VI describes the MDXGenerator. Section VII gives the

meta-language definition, Section VIII presents the algorithm

modelled for the optimal cube selection and Section IX shows

some tests we performed on the system. Section X depicts

some related work, whereas conclusion and possible future

evolvements of eLog are depicted in Section XI.

II. OVERVIEW OF THE ELOG SYSTEM

eBilling is a company that handles the entire life cycle of

the document delivery process, from the generation of files

starting from the raw data supplied by the client, until the

electronic or hard copy delivery of the documents to the end

user.

The eLog application is one of the modules embedded

within the BCPortal®1 developed by eBilling to meet the

demands of the production process and document generation

traceability.

eLog controls the production of spools and documents,

the sending of emails or faxes, the communication to the

printing providers and the delivery of printed documents. The

framework stores low level granularity information related

to operative production processes, i.e. documents transfer

between servers and enterprises, in order to calculate the Key

Performance Indicators (KPIs).

KPIs make possible to assess the adequacy of the expected

and contractually specified services with respect to the Ser-

vice Level Agreement (SLA). eLog traces the evolution and

generates table reports and statistical graphics per type of

flow, thus making it possible to keep track of the business

communication process performance.

As shown in Figure1, data coming from the client’s doc-

ument generation system is traced during three stages of the

document production process: receiving, formatting and send-

ing of documents. Through eLog, customers have vision of

both the internal and external document production processes,

and all the estimated and actual events (pdf file generation,

printing, delivery etc.).

1http://www.ebilling.it/framework.asp?m=0

Fig. 2. eLog architecture

The new version of eLog has been developed to meet the

emerging needs of customer companies’ business managers.

The requirements that the new application had to meet can be

summarized as follows:

1) Simple GUI - users can easily and effectively formulate
multidimensional queries since all the complexities are

masked by the underlying system.

2) Personalization - personalization for eLog customers is
a key issue, as different companies would like to define

their own indicators. The meta-language has been specifi-

cally designed for users that lacks of technical knowledge

on query languages in order to facilitate the definition of

even complex expressions.

Further improvements introduced by the eLog’s new version

are:

1) Technological improvement - the previous version was a
web application developed in Apache Struts which allows

users to extract static reports from the database by a web

form. The database system was queried through SQL or

OQL statements and the result sets were exported as excel

files and therefore analyzed locally. The new version,

instead, offers to customers an on-line service with an

easy-to-use interface implemented in Adobe Flex. Users

can take advantage of a portable (it requires just a browser

with Flash player) and efficient (all the data is maintained

remotely, hence issues such as occasionally data loss are

avoided) tool.

2) Data conceptualization - in order to conceptualise the
description of data and queries and to decouple the GUI

and the OLAP server, a set of XSD schema has been

defined for the description of cubes, attributes and user

generated queries. The XSD schema also provides the

ability to share or exchange custom attributes or queries

among users.

3) Modular and reusable software architecture - MDXGen-
erator is a stand-alone java library, OLAP engine inde-

pendent. Beside being used in the context of eLog, MDX-

Generator can be plugged into any other frameworks

compliant with the data conceptualization implemented

in the XSDs.

Figure 2 summarizes the architecture of eLog. The Core

14181418

component provides general services related to eLog project

setup, search services and monitoring. The Web Application

component communicates with the Core component and pro-

vides high level services to the user. The Analysis Core com-

ponent communicates with the ROLAP server and manipulates

the results returned from multidimensional queries, in order

to improve the data rendering operations of the Data Analysis

Web Application component. The Analysis Core component

permits to analyze reports expressed through the GUI and

converts them into multidimensional queries. To accomplish

this task, it is supported by the MDXGenerator: a stand-

alone library that provides functionalities for automatic mul-

tidimensional queries generation starting from user inserted

configurations. The Data Analysis Web Application compo-

nent is responsible for presenting and validating the analysis

reports. The DB component is responsible for processing and

maintaining large amounts of data acquired from the outside

world, applying rules of extraction, transformation, loading

and data aggregation in order to satisfy the Data Analysis

features requirements. For the ETL process, we take advantage

from our previous work on semantic ETL [1].

III. ELOG CASE STUDY

In order to explain in detail the features provided by the

MDXGenerator and the meta-language, firstly it is useful

to introduce a simple explicative Dimensional Fact Model

(DFM [7]); we will use this fact model to design our examples

appearing in the next sections. The model has been taken from

the real data warehouse model of eLog. In particular we took

out 5 dimensions over 25 and 3 measures over 19.

Our example represents the monitoring activity of the SLA

related to some mail pieces, called missives. The conceptual

representation of our example has been depicted in Fig-

ure 3. The measures we took into consideration are the total

number of missives in SLA (SumMsvINSLA), and the total
and average number of missives for which the SLA has

been expired (respectively SumMsvOUTSLA and AvgMsvOUT-
SLA). The fact has been modeled using five different dimen-
sions, namely: Time, Geographic, Business Process, Society
and Client. The last three dimensions are simple as they
contain just one element in the hierarchy, while, in the Time
dimension we represented the day of interest, the month ,
the quarter, the semester and the year. Similarly, the Geo-
graphic dimension has been divided in city, county, region
and state. Two descriptive attributes, cod and type, have
been, respectively, inserted in the Client and Business Process
dimensions, in order to specify a property upon the related

hierarchy.

IV. ELOG DATA ANALYSIS

The eLog Data Analysis provides trend analysis function-

alities. The web application interface (see Figure 4) contains

the list of the already created reports on the left part. In the

middle it is visualized the pivot table, which is rendered once

the query result is available. The right part of the interface

contains on the top all the attributes (predefined and custom)

Fig. 3. Fact schema of the cube we used to model our examples

that are available for selection, and, on the bottom, the four

quadrants the user can fills with attributes in order to create

the desired query.

The user can create his own reports starting from a list of

attributes. Attributes can be moved on one of the four quad-

rants: filters, columns, rows and values. Attributes disposed

on the values quadrant will be aggregated using one of the

available aggregate functions. Each attribute placed on the

rows defines the level of aggregation and it can also define

specific properties. For example the attribute Client contains
the property cod (see Figure 3) that can be selected by the
user if he decides to visualize this information.

Some predefined KPIs are provided by eLog; the user

has the opportunity to adopt these predefined attributes or

to define new indicators, called custom attributes. A custom
attribute is the result of a meta-language expression and its

operands are attributes already present in the analysis domain

or alphanumeric constants.

In order to highlight the occurrence of certain events, the

user may define formatting rules over the cells in the values

area. The user can specify a boolean expression and the action

to be taken if the expression is evaluated true. For example, a

cell background can be changed in red if the contained number

is below a certain threshold. Moreover, the web interface

provides advanced querying features, e.g. to select the top-k

values or to filter results by measure values.

The Data Analysis provides also save and load functional-

ities which allow to store the created custom attributes, the

formatting settings, and the entire pivot table configuration

if desired. We define pivot table configuration as the output
query resulting from the user interaction with the data analysis

interface, i.e. the selected attributes for each of the four

quadrants and the list of predifined and custom attributes.

14191419

Fig. 4. eLog Data Analysis web interface

V. XSDS FOR HIGH LEVEL CONCEPTUALIZATION

Each pivot configuration is codified in a set of XML files

that will be the input of the MDXGenerator component. Each

XML configuration conforms to an high level conceptualiza-

tion implemented in XML Schema (XSD) [15]. This approach

allows us to maintain a logical separation between the interface

used to define pivot configurations and the system that actually

performs the queries on the data warehouse. On one side, all

the information of the data warehouse schema are not encoded

directly in the business logic (i.e. the web interface is not

tight to a particular data model), on the other side, the back-

end system is lightly coupled with the web interface, since

the only communication means are the pivot configurations

that are compliant with the XSDs. For these reasons, the

MDXGenerator together with the XSDs’ conceptualizations,

can be seen as a bridge between the user interface and the

OLAP server. Moreover, since the MDXGenerator receives as

input just pivot configurations in XML, it can be considered

not only in the context of eLog, but also as an external library

that can be used from other applications.

A generic pivot configuration can be described by means

of nine XSD schemas, each of which models a particular part

of the pivot configuration. eLogPivot is the root element and
it contains the general structure of every pivot configuration.

This general structure contains six subsections: eLogCube
specifies the cubes upon which the analysis should be exe-

cuted; eLogData contains all the attributes that can be used in-
side the configuration; eLogFilters, eLogColumns, eLogRows
and eLogAggreagateValues describe specific properties for
attributes placed on quadrants. Inside eLogData two types of

attributes can be specified: predefined attributes and custom

attribute, respectively described by eLogPredefinedAttribute
and eLogCustomAttribute.

VI. MDX GENERATOR

MDXGenerator is the java library able to generate a MDX

query starting from a XML pivot configuration. MDXGener-

ator is also responsable for the syntactic verification of the
pivot configuration and the semantic correctness of the MDX
expression.

The syntactic verification examines the input pivot configu-

ration so that it contains all the attributes and the information

needed for the correct creation of the query, and that, in addi-

tion, the information conforms to the XSD schemas described

in Section V.

Once the input has been verified to be syntactically well-

formed, it is divided in subsections of interest and parsed.

During the parsing phase, six different structures are filled

with the elements extracted from the pivot configuration. The

first structure, called Data Cube, contains all the cubes that
should be taken into consideration for the query execution,

and hence contained in the eLogCube section of the in-

put configuration. Section VIII describes in details how the

Data Analysis component chooses the more suitable cube

for execution on the OLAP server among the provided list.

Another structure, namely Data Attributes, is allocated for the
attributes - predefined or custom - directly involved in the

query. The system is therefore able to work just on a subset

of all the attributes contained in the eLogData section of the
configuration.

14201420

For every custom attribute instantiated, the system performs

on-the-fly translation of the meta-language expression into

MDX. After that, the semantic correctness of the MDX

expression is checked. The MDXGenerator verifies that the

elements contained in the configuration can be mapped into

the data schema on the OLAP server.

During the meta-language translation, we need to define a

solve order sequence for all the selected custom attributes.

This sequence is automatically computed by using the position

in the quadrant chosen by the user. For instance, if the

column quadrant contains two custom attributes, the attribute

that has been firstly selected by the user, will be solved

as first, meanwhile the second attribute will be solved after

the first attribute. The other structures are used to store the

elements contained in the quadrant, hence one structure for

each quadrant.

<P i v o t P i v o t I d =” 123456 ” PivotName=” T e s t P i v o t ”
x s i : s c h emaLo c a t i o n =” eLogNamespace eLogP ivo t . xsd ”

xmlns=” eLogNamespace ” xm l n s : x s i =” h t t p : / /www.w3 .
org / 2 0 0 1 /XMLSchema−i n s t a n c e ”> <
P i v o t C o n f i g u r a t i o n>
<P ivo tCubes>

<CubeName Name=”CUBE 1” />
< / P ivo tCubes>
<F i l t e r s Q u a d r a n t>

<P r e d e f i n e d A t t r i b u t e F i l t e r L i s t A t t r i bu t eName=”
Time Semester ”>

<F i l t e r>1< / F i l t e r>
< / P r e d e f i n e d A t t r i b u t e F i l t e r L i s t>
<P r e d e f i n e d A t t r i b u t e F i l t e r L i s t A t t r i bu t eName=”

Time Year ”>
<F i l t e r>2010< / F i l t e r>

< / P r e d e f i n e d A t t r i b u t e F i l t e r L i s t>
< / F i l t e r s Q u a d r a n t>
<ColumnHeadingQuadrant>
<P r e d e f i n e dA t t r i b u t e A t t r i bu t eName=” Bus i n e s s

P r o c e s s ” />
< / ColumnHeadingQuadrant>
<RowHeadingQuadrant>

<P r e d e f i n e dA t t r i b u t e A t t r i bu t eName=” So c i e t y ”>
<F i l t e r>Red Bu l l< / F i l t e r>

< / P r e d e f i n e d A t t r i b u t e F i l t e r L i s t>
< / RowHeadingQuadrant>
<Aggrega t eVa lue sQuad r an t>

<Aggrega t eVa lue At t r i bu t eName=”SumMsvINSLA”
Agg r eg a t eFunc t i o n =”Sum”>

<Cond i t i o n Ope r a t o r =”>” Value=” 1000 ”>
<Format Fon tCo lo r =” Black ” BackgroundColor=

”Red” />
< / Cond i t i o n>

< / Aggrega t eVa lue>
< / Agg r ega t eVa lue sQuad r an t>

< / P i v o t C o n f i g u r a t i o n>
<P i vo tDa t a>

<P r e d e f i n e dA t t r i b u t eD a t a A t t r i bu t eName=”
Time Year ” DimensionName=”Acq Time”
LevelName=”Year ” />

<P r e d e f i n e dA t t r i b u t eD a t a A t t r i bu t eName=”
Time Semester ” DimensionName=”Acq Time”
LevelName=” Semes t e r ” />

<P r e d e f i n e dA t t r i b u t eD a t a A t t r i bu t eName=” So c i e t y ”
DimensionName=” So c i e t y ” LevelName=”
L DES SOCIETY”>

<A t t r i b u t eMe a s u r e s>
<Measure Agg r eg a t eFunc t i o n =”Count ” />

< / A t t r i b u t eMe a s u r e s>
< / P r e d e f i n e dA t t r i b u t eD a t a>
<P r e d e f i n e dA t t r i b u t eD a t a A t t r i bu t eName=” Bus i n e s s

P r o c e s s ” DimensionName=” P r o c e s s ” LevelName=
”L DES PROCESS”>

<A t t r i b u t eMe a s u r e s>
<Measure Agg r eg a t eFunc t i o n =”Count ” />

< / A t t r i b u t eMe a s u r e s>
<A t t r i b u t e D e t a i l s>

<De t a i l Name=” t ype ” Leve lProper tyName=”TYPE”
/>

< / A t t r i b u t e D e t a i l s>
< / P r e d e f i n e dA t t r i b u t eD a t a>
<P r e d e f i n e dA t t r i b u t eD a t a A t t r i bu t eName=”

SumMsvINSLA” DimensionName=”Measures ”>
<A t t r i b u t eMe a s u r e s>

<Measure Name=”SumMsvINSLA”
Agg r eg a t eFunc t i o n =”Sum” />

< / A t t r i b u t eMe a s u r e s>
< / P r e d e f i n e dA t t r i b u t eD a t a>

< / P i v o tDa t a>
< / P i v o t>

Listing 1. Pivot configuration example

Once the whole configuration has been parsed, MDXGen-

erator starts the composition of the final query: this is a

java object containing three different strings, one for each

section of a MDX query, namely SELECT, FROM, and WHERE.
The FROM string contains a list of cubes; it is the Analysis
Core’s task to chose the best cube and consequently the

reassembling of the query (see section VIII for a detailed

description). The SELECT and WHERE strings are generated
starting from the structures already filled, wrapping the at-

tributes information with MDX language constructs.

Listing 1 shows a simple example of pivot configuration

(with the omission of some specific details), while Listing 2

shows the MDX query generated by the library. As pointed

out in Section 4, users can specify conditions and actions to

be performed when conditions are verified.

In Listing 1, the condition “SumMsvINSLA>1000” on the
aggregate value SumMsvINSLA has been set. The condition

is verified on each single cell, once the condition occurs

the format action is executed. In listing 1, this results in a

red colored cell. Other similar features like for instance, the

selection of top-k values, or the filtering by measure values,

are managed directly by the web interface.

MEMBER [P r o c e s s] . [T o t a l Bu s i n e s s P r o c e s s] AS Sum (
Excep t ({ [P r o c e s s] . [L DES PROCESS] . Members } , [
P r o c e s s] . [(A l l)] . CurrentMember)) , SOLVE ORDER=1

SELECT NON EMPTY {UNION (Excep t ({ [P r o c e s s] . [
L DES PROCESS] . Members } , [P r o c e s s] . [(A l l)] .
CurrentMember) , [P r o c e s s] . [T o t a l T o t a l Bu s i n e s s
P r o c e s s]) * { [Measures] . [SumMsvINSLA]}} ON
COLUMNS,

NON EMPTY {{ [S o c i e t y] . [L DES SOCIETY] . [Red Bu l l]}}
ON ROWS

FROM CUBE T1CATMS
WHERE [Acq Time] . [2 0 1 0] . [1]

Listing 2. MDX Query resulting from the pivot configuration of listing 1

A. MDX Generator Repository

Users can create a multitude of different reports using

our system, however we expect that, once a new report is

created, users continue to adopt it over time. Therefore not

only the Data Analysis service supports the features of saving

14211421

and loading reports, but also MDXGenerator implements a

repository where already parsed configurations can be stored,

thus decreasing the query generation time. The repository

basically works as a cache memory: if a pivot configuration is

stored in memory, there is no need to resolve the configuration,

in fact the data can be retrieved directly from the cache. In

order to maximize the reuse of cached information, we store

each of the six data structures in the repository independently.

If two pivot configurations differs just for a quadrant, we can

use the already filled data structures for all the configuration

sections that do not differ. MDXGenerator allows the reuse

of the repository among different sessions thanks to its ability

to save and load the cache in persistent memory. From the

MDXGenerator configuration file, it can be specified if the

repository must be made persistent, and how (so far, the

repository can be saved on the file system or creating an entry

on a database using JDBC).

VII. METALANGUAGE AND CUSTOM ATTRIBUTES

The system allows users to combine predefined attributes in

order to analyze some specific event, but the user may also

create a custom attribute, specifying an expression which
defines the new attribute. Since MDX can be considered too

expressive and complex for the target users the application has

been developed for, we designed a meta-language specifically

tailored for our domain. This meta-language is a simplified

version of the MDX language both in semantics and syntax.

In the next section we describe the meta-language, while in

Section VII-B we briefly show how custom attributes can be

created through a couple of examples.

A. Meta-language Description

The main features introduces by the meta-languages are:

(a) a list of functions to combine and manage attributes

values;

(b) the hierarchy management: it is possible to create new
members inside a hierarchy or new hierarchies embracing
a subset of members of a hierarchy.

The following elements have been introduced: Num-
ber, Constant, MDX Entity, Expression. We define as Number
any element containing just numbers, while Constant is an
element containing any sequence of characters and (poten-

tially) numbers. A MDX Entity is any member belonging to
a dimension inside a cube: it is specified by using the MDX

notation ([Entity] for example). An Expression can be of three
types: Arithmetic Expression, composed by two arithmetic
operands and one of the usual arithmetic operators (“+”, “-”,

“*”, “/”); Comparison Expression where the two operands are
arithmetic and the permitted operators are the relational ones

(“ >”, “ <”, “ =”, “ >=”, “ <=” e “ <>”); Logic Expression,
described by two or more logic operands separated by one of

the “AND”, “OR”, “XOR” and “NOT” operators. The strings

“true”, “false”, and the Search Function are considered
as logic operands.

The list of Functions we implemented in our meta-language
in order to combine and manage values within the measures

(and dimensions) is the following: format, if, concat,
contains, current, previous, following.

1) Format Function: The format function accepts as

parameters the element to be formatted and the formatting

string, and returns as a result the string containing the element

in the new format. The elements that can be passed as input

are: an MDX Entity, an Expression or another Function. The
formatting string is used to specify how the input element

should be represented, and is composed by an optional value

character followed by any sequence of numeric or alphabetic

character. An example of format function and related MDX
translation is reported in Listing 3 and 4.

FORMAT ([P r i c e] ; ‘ ‘ $# , ### . 0 ”)

Listing 3. Example of Format Function

WITH MEMBER [Measures] . [P r i c e i n Do l l a r s] AS [
Measures] . [P r i c e] , FORMAT\ STRING= ‘ ‘$# ,### .0 ”

Listing 4. MDX translation of Listing 3

2) If Function: In the if function three parameters have
to be specified: the condition that must be assessed, the value

that has to be returned if the condition is true and the value

that has to be returned otherwise. The accepted condition

parameters are a Comparison or a Logic Expression. The
permitted result elements are: Constant, Arithmetic Operand,
Expression and Function. An example of if function and the
related translation in MDX is reported in Listing 5 and 6.

IF ([SumMsvINSLA] >= 0 ; IF ([SumMsvINSLA] <= 100 ; ‘ ‘
Low” ; ‘ ‘ High ”) ; ‘ ‘ Los t ”)

Listing 5. Example of If Function

WITH MEMBER [Measures] . [SumMsvINSLA Margin] AS I I F
([Measures] . [SumMsvINSLA] >= 0 ; I I F ([Measures
] . [SumMsvINSLA] <= 1 ; ‘ ‘Low” , ‘ ‘ High ”) ; ‘ ‘ Los t ”)

Listing 6. MDX translation of Listing 5

3) Concat Function: The concat function can be used to
concatenate two input elements in one string. The elements

allowed as input of the function are: Constant, MDX Entity,
another concat function or current, previous and

following functions. Listing 7 and 8 show an example of
use of a concat function and its MDX translation.

CONCAT ([Time] . [Month] ; CONCAT (‘ ‘ ” ; [Time] . [Day]))

Listing 7. Example of Concat Function

WITH MEMBER [Time] . [Complete Data] AS [Time] . [Month]
| | ‘ ‘ ” | | [Time] . [Day]

Listing 8. MDX translation of Listing 7

4) Contain Function: The contain function searches into
the first parameter the value of the second parameter: if the

value is present the function returns “true”, “false” otherwise.

Therefore the contain function accepts two parameters: the
element where the research must be accomplished and the

value of interest. The input can be a Constant, an MDX Entity,
current, previous or following functions. Listing 9

14221422

and 10 show an example and the related MDX translation of

a contain function.

IF (CONTAIN ([F i l e name] ; ‘ ‘ z i p ”) ; ‘ ‘ Compressed ” ; ‘ ‘
Not compressed ”)

Listing 9. Example of Contain Function

WITH MEMBER [F i l e] . [Compress ion] AS I I F (Cbool (
I n S t r (S t r ([F i l e] . [F i l e name]) , ‘ ‘ z i p ”)) , ‘ ‘
Compressed ” , ‘ ‘ Not compressed ”)

Listing 10. MDX translation of Listing 9

5) Current, Previous and Following Functions: These

functions are the equivalent of CurrentMember,
PrevMember and NextMember in MDX.

current/previous/following considers the

current/previous/following member during the iteration

inside a hierarchy or dimension. Listing 11 and 12 describe

an example of a previous function.

PREVIOUS ([S a l e s] . [2 0 0 8])

Listing 11. Example of Previous Function

WITH MEMBER [S a l e s] . [2 0 0 7] AS [S a l e s] . [2 0 0 8] .
PrevMember

Listing 12. MDX translation of Listing 11

6) Create Hierarchy Function: To create and manage new
hierarchies, a specific function has been introduced. This

function creates a new hierarchy joining members from an

existing hierarchy. The created hierarchy is therefore a subset

of the original. The input parameters are a set of members

belonging to the same hierarchy. An example of this function

and related translation are reported in Listing 13 and 14.

CREATEHIERARCHY ([Coca−Cola] ; [Red Bu l l] ; [P ep s i])

Listing 13. Example of Create Hierarchy Function

WITH SET [Dr ink Companies] AS { [S o c i e t y] . [Coca−Cola
] , [S o c i e t y] . [Red Bu l l] , [S o c i e t y] . [P ep s i]}

Listing 14. MDX translation of Listing 13

For a complete EBNF definition of the meta-language we

developed, refer to the appendix.

B. Examples

Basically, the meta-language can be used to create two

types of MDX elements: new members inside a hierarchy
and new hierarchies embracing a subset of elements of a
hierarchy already present in the cube. We introduce two simple

examples.

In the first example, we want to compute for every client

and for the cities of Naples and Rome, the number of missives

in SLA and the total number of missives that are both in

SLA and outside the SLA. This for the first and the second

quarter of each year. Considering that the system does not

contain an attribute specifying both the missive in SLA and

out SLA, we have to define a new custom attribute expressing

the sum between the predefined attributes SumMsvINSLA

Fig. 5. GUI for the creation of a new custom attribute

and SumMsvOUTSLA. To create the new custom member,

starting from the GUI shown in Figure 5, the user enters

in the field Name, the desired name for the new attribute

(SumMsvIN/OUT), in Type the data type of the new attribute
(Categorical Nominal, Categorical Ordinal, Numeric or Tem-

poral), and in Analysis Domain the domain the new attribute
belongs to.

<Cus t omAt t r i b u t eDa t a A t t r i bu t eName = ‘ ‘SumMsvIN /OUT”
Use r Id = ‘ ‘ admin ” A t t r i b u t e T y p e = ‘ ‘N”
Analys i sDomain = ‘ ‘ P r o d u c t i o n ” So lveOrde r = ‘ ‘1 ”>

<Exp r e s s i o n D e f i n i t i o n = ‘ ‘ [SumMsvINSLA]+ [SumMsvOUTSLA
] ” L o c a l i z a t i o n = ‘ ‘ en US”/>

</ Cu s t omAt t r i bu t eDa t a>

Listing 15. Custom attribute definition for the first example

Further, the user is facilitate in the task of creating a

meta-language expression defining the meaning of the custom

attribute by the “Attribute Library” and the “Operator” lists

that appear in the right part of the interface. The XML

describing the new member SumMsvIN/OUT and compliant

to the XSD depicted in Section V is reported in Listing 15.

For a custom attribute, the XML contains in AttributeName
the name of the new member or hierarchy, in UserId the id of
the user that creates it, in AttributeType the type of attribute (N
for numeric, T for Temporal, CO for Categorical Ordinal and

CN for Categorical Nominal), in AnalysisDomain the domain
the new attribute belongs to, in SolveOrder the order in which
the custom element must be solved by the OLAP server, and

in DimensionName the dimension that contains the custom
attribute (measures by default).

WITH
MEMBER Measures . [SumMsvIN /OUT] AS [Measures] . [

SumMsvINSLA]+ [Measures] . [SumMsvOUTSLA] ,
SOLVE ORDER=3

MEMBER [C l i e n t] . [T o t a l C l i e n t] AS Sum (EXCEPT({ [
C l i e n t] . [L DES CLIENT] . Members} , [C l i e n t] . [(A l l)
] . CurrentMember))

MEMBER [Geograph ic] . [T o t a l Geograph ic] AS Sum ({ [
Geograph ic] . [C i t y] . [Rome] , [Geograph ic] . [C i t y] . [
Nap les]})

14231423

TABLE I
PIVOT CONFIGURATION OF THE FIRST EXAMPLE

Filters Columns
Time.Quarter.1 SumMsvINSLA

Time.Quarter.2 SumMsvIN/OUT

Rows Aggregate Values
Client

Geographic.City.Rome

Geographic.City.Naples

TABLE II
PIVOT CONFIGURATION OF THE SECOND EXAMPLE

Filters Columns
SumMsvINSLA

Paper Hierarchy

Digital Hierarchy

Rows Aggregate Values
Drink Companies AvgMsvOUTSLA

Motor Companies

SELECT NON EMPTY {Union ([Measures] . [SumMsvINSLA] ,
Measures . [SumMsvIN /OUT]) } ON COLUMNS,

NON EMPTY {Union (Excep t ({ [C l i e n t] . [L DES CLIENT] .
Members} , [C l i e n t] . [(A l l)] . CurrentMember) , [
C l i e n t] . [T o t a l C l i e n t]) * { [Geograph ic] . [C i t y] . [
Rome] , [Geograph ic] . [C i t y] . [Nap les] , [Geograph ic
] . [T o t a l Geograph ic]}} ON ROWS

FROM CUBE T1
WHERE { [Acq Time] . [Qua r t e r] . [1] , [Acq Time] . [Qua r t e r

] . [2] }

Listing 16. MDX query generated from the pivot configuration of Table I

Since the meta-language has been developed in multiple

localizations (Italian and English so far) in order to make users

more familiar with it, each custom attribute contains one or

more Expression, one for each localization. In each expression
element, the attribute Definition contains the meta-language
expression defining the new element, meanwhile Localization
contains the localization (en US for English, it IT for Italian).

The pivot configuration from which the query will be gener-

ated, is described in Table I. The MDX query produced by the

MDXGenerator is shown in Listing 16.

The second example shows how new hierarchies can be

created. Let us suppose we want to know the number of

missives in SLA and the average number of missives out

SLA. The results must be grouped by some particular business

process and by certain society of interest.

The XML containing the definition of the new hierarchies

is contained in Listing 17.

<Cus t omAt t r i b u t eDa t a A t t r i bu t eName = ‘ ‘ Dr ink Companies
” Use r Id = ‘ ‘ admin ” A t t r i b u t e T y p e = ‘ ‘N”
Analys i sDomain = ‘ ‘ P r o d u c t i o n ” So lveOrde r = ‘ ‘1 ”
DimensionName = ‘ ‘ S o c i e t y ”>

<Exp r e s s i o n D e f i n i t i o n = ‘ ‘CREATEHIERARCHY([Coca−Cola
] ; [P ep s i] ; [Red Bu l l] ; [7 up]) ” L o c a l i z a t i o n = ‘ ‘
en US” />

< / Cu s t omAt t r i b u t eDa t a>
<Cus t omAt t r i b u t eDa t a A t t r i bu t eName = ‘ ‘Motor Companies

” Use r Id = ‘ ‘ admin ” A t t r i b u t e T y p e = ‘ ‘N”

Analys i sDomain = ‘ ‘ P r o d u c t i o n ” So lveOrde r = ‘ ‘1 ”
DimensionName = ‘ ‘ S o c i e t y ”>

<Exp r e s s i o n D e f i n i t i o n = ‘ ‘CREATEHIERARCHY([BMW] ; [
F i a t] ; [Audi] ; [Mercedes] ; [Renau l t]) ”
L o c a l i z a t i o n = ‘ ‘ en US” />

< / Cu s t omAt t r i b u t eDa t a>
<Cus t omAt t r i b u t eDa t a A t t r i bu t eName = ‘ ‘ Pape r H i e r a r c hy

” Use r Id = ‘ ‘ admin ” A t t r i b u t e T y p e = ‘ ‘N”
Analys i sDomain = ‘ ‘ P r o d u c t i o n ” So lveOrde r = ‘ ‘1 ”
DimensionName = ‘ ‘ S o c i e t y ”>

<Exp r e s s i o n D e f i n i t i o n = ‘ ‘CREATEHIERARCHY([Bu s i n e s s
P r o c e s s] . [Con t a c t] . [Working Phase s] . [Pape r]) ”
L o c a l i z a t i o n = ‘ ‘ en US” />

< / Cu s t omAt t r i b u t eDa t a>
<Cus t omAt t r i b u t eDa t a A t t r i bu t eName = ‘ ‘ D i g i t a l

H i e r a r c hy ” Use r Id = ‘ ‘ admin ” A t t r i b u t eT y p e = ‘ ‘N”
Analys i sDomain = ‘ ‘ P r o d u c t i o n ” So lveOrde r = ‘ ‘1 ”
DimensionName = ‘ ‘ S o c i e t y ” To t a lW i t h ou tOve r l a p p i n g
= ‘ ‘ t r u e ”>

<Exp r e s s i o n D e f i n i t i o n = ‘ ‘CREATEHIERARCHY([Bu s i n e s s
P r o c e s s] . [Con t a c t] . [Working Phase s] . [SMS] ; [
Bu s i n e s s P r o c e s s] . [Con t a c t] . [Working Phase s] . [
Email] ; [Bu s i n e s s P r o c e s s] . [Con t a c t] . [Working
Phase s] . [Fax]) ” L o c a l i z a t i o n = ‘ ‘ en US”/>

</ Cu s t omAt t r i bu t eDa t a>

Listing 17. Custom hierarchies definition for the second example

As it can be noticed, in the Digital hierarchy, the
property TotalWithoutOverlapping is true. This property (false
by default) specifies how the repeated values must be treated

in the total: if the property is set to true, the repeated values

are counted just one time, in the other case the total considers

also duplicated values. The pivot configuration is shown in

Table II, meanwhile the related MDX query is contained in

Listing 18.

WITH
SET [Pape r H i e r a r c hy] AS { [Bu s i n e s s P r o c e s s] . [

Con t a c t] . [Working Phase s] . [Pape r]}
MEMBER [P roc edu r e] . [A l l Pape r H i e r a r c hy] AS Sum ([

Pape r H i e r a r c hy]) , SOLVE ORDER=1
SET [D i g i t a l H i e r a r c hy] AS { [Bu s i n e s s P r o c e s s] . [

Con t a c t] . [Working Phase s] . [SMS] , [Bu s i n e s s
P r o c e s s] . [Con t a c t] . [Working Phase s] . [Email] , [
Bu s i n e s s P r o c e s s] . [Con t a c t] . [Working Phase s] . [
Fax]}

MEMBER [Bus i n e s s P r o c e s s] . [A l l D i g i t a l H i e r a r c hy] AS
Sum ([D i g i t a l H i e r a r c hy]) , SOLVE ORDER=1

MEMBER [Bus i n e s s P r o c e s s] . [T o t a l Bu s i n e s s P r o c e s s]
AS Sum (D i s t i n c t ({ [Pape r H i e r a r c hy] , [D i g i t a l
H i e r a r c hy]})) , SOLVE ORDER=1

SET [Drink Companies] AS { [S o c i e t y] . [Coca−Cola] , [
S o c i e t y] . [P ep s i] , [S o c i e t y] . [Red Bu l l] , [S o c i e t y
] . [7 up]}

MEMBER [So c i e t y] . [A l l Cus tomHiera rchy1] AS Sum ([
Dr ink Companies]) , SOLVE ORDER=1

SET [Motor Companies] AS { [S o c i e t y] . [BMW] , [S o c i e t y
] . [F i a t] , [S o c i e t y] . [Audi] , [S o c i e t y] . [Mercedes
] , [S o c i e t y] . [Renau l t]}

MEMBER [So c i e t y] . [A l l Motor Companies] AS Sum ([
Motor Companies]) , SOLVE ORDER=1

MEMBER [So c i e t y] . [T o t a l S o c i e t y] AS Sum ({ [Dr ink
Companies] , [Motor Companies]}) , SOLVE ORDER=1

SELECT NON EMPTY {Union (Union (Union ([Bu s i n e s s
P r o c e s s] . [A l l Pape r H i e r a r c hy] , [Pape r H i e r a r c hy
] , ALL) , Union ([P r o c edu r e] . [A l l D i g i t a l
H i e r a r c hy] , [D i g i t a l H i e r a r c hy] , ALL) , ALL) , [
Bu s i n e s s P r o c e s s] . [T o t a l Bu s i n e s s P r o c e s s] , ALL
) * { [Measures] . [SumMsvINSLA] , [Measures] . [
AvgMsvOUTSLA]}} ON COLUMNS,

NON EMPTY {Union (Union (Union ([S o c i e t y] . [A l l Dr ink

14241424

Companies] , [Dr ink Companies] , ALL) , Union ([
S o c i e t y] . [A l l Motor Companies] , [Motor Companies
] , ALL) , ALL) , [S o c i e t y] . [T o t a l S o c i e t y] , ALL) }
ON ROWS

FROM CUBE T1

Listing 18. MDX query generated from the pivot configuration of Table II

VIII. CUBE SELECTION

The MDXGenerator only deals with the generation of the

query. In case more that one cube is specified in the query, it

does not investigate which cube is the more suitable for the

query execution. For this reason, the query object created by

the MDXGenerator contains in the FROM field all the cubes
that might be used. In order to determine the cube that best

fit the query, we developed an algorithm that chooses among

all the cubes contained in the pivot configuration the optimal

one for the execution of the query.

The algorithm has been designed to be as general as possible

and completely independent on the input cubes. In such a

way, it is not mandatory that the input cubes share the same

semantic structure. In eLog each of the input cubes takes into

consideration different portion of the schema and therefore

it may contain data at different granularity. For example, the

phase-level cube contains data at an higher granularity than the
contract-level cube (since a contract collects more phases).
In our algorithm we consider a schema S(C,D), where C is

the set containing all the cubes and D the set of all dimensions.
Given a query Q derived from the pivot table configuration,

we define QL′ as the query that involves the non empty set

L′ of hierarchical levels of dimensions, where L′ ⊆ L and L
is the set of all the distinct levels belonging to at least one

dimension contained in the set D. We denote CL[l] as the not
empty subset of C containing the cubes where the dimension
of the level l ∈ L is used. We denote |c| as the number of
dimensions in the cube c. In addition, among all the cubes, we
consider c0 as the cube containing all the levels with lowest
granularity.

I n p u t : C , QL′
Outpu t c ∈ C
begin

C′ = ∩li∈L′CL′ [li]

i f |C′| = 0 then c = c0

e l s e
i f |C′| = 1 then c = c1

e l s e
c = c∗ where c∗ ∈ C′, �c′ ∈ C′, c′ �= c∗, |c′| < |c∗|

end

Listing 19. Algorithm for the selection of the cube starting from a pivot
table configuration

Given the query QL′ , we define as optimal cube, c ∈ C , the
one that contains all the dimensions of the levels L′ involved
in the query and has the minimal cardinality |c| 2. Listing 19
2If more than one cube has the minimal cardinality and encloses all the

dimensions of the levels L′, the system executes the query Q on all the
equivalent cubes.

TABLE III
DBMS CONFIGURATION

DBMS Vendor Oracle

DBMS Distribution Oracle 10g Standard Edition

DBMS SGA 1,5Gb

DBMS HostSO Red Hat Enterprise Linux Server

Release 5.3

DBMS HostRAM 16Gb

DBMS HostDisk 2 Disks SAS RAID1 10.000 rpm

DBMS HostCPU 2 Processors 4 Core 3Ghz

DBMS HostSwap 16Gb

TABLE IV
APPLICATION SERVER CONFIGURATION

AS Vendor JBOSS

AS Version JBOSS 4.2.0

AS JDK 1,5 (32bit)

AS HeapSize 2Gb

AS HostRAM 16Gb

DBMS HostDisk 2 Disks SAS RAID1 10.000 rpm

DBMS HostCPU 2 Processors 4 Core 3Ghz

DBMS HostSwap 16Gb

TABLE V
CLIENT CONFIGURATION

Client RAM 3Gb DDR2 400Mhz

Client Disk Dell SATA2 5400rpm

Client CPU Intel Core 2 Duo P9600@2,66 Ghz

Client Network Ethernet 1Gigabit

summarizes our algorithm.

IX. TEST

In order to evaluate the performance of the new version

of eLog, we arranged preliminary tests on the systems. Ana-

lyzing real data gather from the first version of eLog a use

case has been created. On this use case, we generated 15

typical queries, ordered by complexity, i.e. by the number of

dimension involved (from a minimum of 3 to a maximum of

8 different dimensions). Table VI shows the queries summary,

containing the number of dimensions used, the total amount

of data returned for each query request and a brief description

of the query. Even if our data warehouse consists of 25

dimensions, we did not adopt more than 8 dimensions per

query, since it has been observed that a report containing

such number of dimensions is enough complex for a typical

pivot analysis. The number of facts we considered for our

test are 8.974.662, and are related to 8 months of eLog’s data

production. We used Btree index for the foreign keys on the

fact table. We simulated the concurrent access for up to 25

users. The software and hardware configurations we adopted

for the DBMS, the Application Server and the Client are

reported in Tables III, IV and V.

We made three different tests. In the first test, we measured

14251425

��

���

���

���

���

����

����

����

����

����

�� �� 	� ��
� �� �� �� �� ��� ��� ��� �	� ��� �
�

��
�
��
��
��

��

	
����

�������	
��������������������

��������

������

Fig. 6. Performance comparison between the MDX Generator with and
without the cache functionality

��

������

�������

�������

�������

�������

�������

�������

�������

�� �� �� �� �� �� �� �� 	� ��� ��� ��� ��� ��� ���

��
��
��

��
��
��

��
��
��

��

������

���������������������

Fig. 7. Response time of the system

the time the MDXGenerator takes to elaborate each of the

15 queries without exploiting the caching functionality. In

the second test, instead, we measured the performance of the

MDXGenerator for the same set of queries but exploiting also

the cache. Figure 6 represents the performance comparison

between these two tests.As can be easily notice, exploiting

the cache outperforms by 7 times the performance of the

MDXGenerator.

In the third test, we measured the total response time

of the system, starting from the time the user delivers the

request, and ending when the client has completed the data

loading from the server (hence taking into consideration also

the MDXGenerator elaboration time using the cache). All the

requests are submitted in parallel by all the 25 users and the

response time, charted in Figure 7, is the average of the users

response time. Each query has been executed without using

the caching mechanism of the OLAP server.

X. RELATED WORK

Nowadays, managers and decision makers wish to have

a simple and powerful tool to perform data analysis. Many

OLAP servers [4] allow the definition of queries among

multidimensional databases by means of languages, such as

MDX, that are very effective but hard to be used by business

managers. On the other side, commercial tools for semi-static

reporting provide a higher usability but lack in:

1) consistency with multidimensional operations,

2) proved theoretical foundations,

3) a middle layer implementing a conceptual view over the

multidimensional element stored underneath and

4) analysis coherence [13].

Among the commercial tools landscape, Microsoft Excel

PivotTable provides an expressive interface but does not sup-

port many dynamic analysis functionalities. Pivot tables are

commonly criticized for disgraceful handling of large data sets

and inefficiency in solving non-trivial analytical tasks, such as

recognizing patterns, discovering trends, identifying outliers,

etc.

State-of-the-art commercial OLAP tools, such as Business

Objects, Cognos BI, Tableau and Targit, enhance the pivot

table view by providing very flexible data manipulation ca-

pabilities, often as vendors proprietary visualizations. A most

important system, called Polaris [14], extends the Pivot Table

interface by offering a combination of a variety of displays

and tools for visual specification of analysis tasks. Polaris

is the predecessor of a commercial product called Tableau

Software [2]. ProClarity was the first to enhance business

intelligence with Decomposition Trees [12] for visual node-by-

node disaggregation of data cubes. XMLA enriches the idea

of hierarchical disaggregation by arranging the decomposed

subtotals of each parent value into a nested chart (Bar- and

Pie-Chart Trees) in its Report Portal OLAP client [16]. Visual

Insights has developed a family of tools, called ADVIZOR,

with an intuitive framework for parallel exploration of multiple

measures [5]. Each of these systems adopt a proprietary data

model and query language, while our framework uses the

multidimensional model [7] and the MDX query language.

While most vendors tend to limit the scope of supported

visual layouts to popular and proven ones, researchers propose

to employ novel visualization techniques to take full advan-

tage of multidimensional and hierarchical properties of data.

[10] concentrates on the problem of loosing the aggregates

computed at preceding query steps while changing the level

of detail and propose to use hierarchical layouts for captur-

ing the results of multiple decompositions within the same

display using the Enhanced Decomposition Tree technique.

An advanced exploration framework for OLAP based on

coordinated views of dimension hierarchies is proposed in [3].

Each dimension hierarchy, with qualifying fact entries attached

as the bottom- level nodes, is presented using a space-filling

nested tree layout. Drilling-down and rolling-up is performed

implicitly by zooming within each dimension view. A new

visual interactive exploration technique for an analysis of

multidimensional databases is proposed in [6]: users can gain

both overviews and refine views on any particular region of

interest of data cubes through the combination of interactive

tools and navigational functions such as drilling down, rolling

up, and slicing.

Our approach overcomes the limitations of conventional

interfaces by abstracting various visualization options into a

common presentation model and providing algorithms im-

plemented into MDXGenerator for mapping user interactions

(providing MDX database queries) as well as mapping query

results to a specified visual layout.

14261426

TABLE VI
QUERIES INFORMATION

Query Dim. Ret. Data Description

1 3 9758B Number of completed, expected, unfinished missives, in SLA and out SLA missives, grouped by
BILLING, OUTBOUND, RESEND ELIBRARY projects, for the customer MEDIASET and related to
the acquisition time 1st quarter 2010

2 3 11136B Number of completed, expected, unfinished missives, in SLA and out SLA missives, grouped by all
projects related to the customer H3G, and to the acquisition time 1st and 2nd quarter 2010

3 5 29290B Number of completed, expected, unfinished missives, in SLA and out SLA missives, grouped by
EMISSION and ACQUISITION LOT, received in the fist quarter 2010, and belonging to the project
BILLS POST CONSUMER of the customer H3G

4 5 81576B Number of completed, expected, unfinished missives, in SLA and out SLA missives, grouped by PRICE
DESTINATION and AREA, received in the 1st quarter 2010, belonging to the custom H3G

5 5 10710248B Number of completed, expected, unfinished missives, in SLA and out SLA missives, grouped by PRICE
DESTINATION and CAP, received in the 1st quarter 2010, belonging to the customer H3G

6 5 34240B Number of completed missives, partitioned by SLA range, grouped by ACQUISITION LOT code, received
in the 1st quarter 2010 and belonging to the customer H3G

7 7 57435B Number of completed missives, partitioned by SLA range, grouped by EMISSION, ACQUISITION LOT
and WORKFLOW, related to the acquisition time 2010 and belonging to the customer SKY

8 7 298874B Number of missives, partitioned by SLA range, grouped by EMISSION, ACQUISITION LOT and
WORKFLOW, related to the acquisition time June 2010 and belonging to the customer FASTWEB

9 6 189957B Number of completed missives, partitioned by SLA range, grouped by EMISSION, ACQUISITION LOT
and WORKFLOW, related to the acquisition time June 2010 and belonging to the customer FASTWEB

10 6 14467B Number of completed missives, partitioned by delivery state, grouped by PRICE DESTINATION AM-
CP-EU and weight range, related to the acquisition lots received in the 3rd quarter 2010 and belonging
to the customer FASTWEB

11 6 2249665B Number of completed missives, partitioned by delivery state, grouped by PRICE DESTINATION AM-
CP-EU, related to the acquisition lots received in the 3rd quarter 2010 and belonging to the customer
FASTWEB

12 7 2865182B Number of completed missives, partitioned by delivery state, grouped by PRICE DESTINATION AM-
CP-EU, AREA and CAP, related to the lots received in the 3rd quarter 2010 and belonging to the customer
FASTWEB

13 6 17033B Number of completed missives, partitioned by delivery state, grouped by PRICE DESTINATION AM-
CP-EU and AREA, related to the lots received in the 2nd quarter 2010 and belonging to the customer
MEDIASET

14 6 77427B Number of completed missives, partitioned by delivery state and SLA range, grouped by PRICE
DESTINATION AM-CP-EU and AREA, related to the acquisition lots received in the 1st quarter 2010
and belonging to the customer H3G

15 8 8375465B Number of completed missives, partitioned by delivery state, grouped by PRICE DESTINATION AM-
CP-EU, AREA and CAP, related to the lots received in the 3rd quarter 2010 and belonging to the customer
FASTWEB

XI. CONCLUSION

We presented eLog: the business intelligence solution of

eBilling for document management traceability, optimization

and analysis. We outlined the improvements reached by the

eLog new version, which allows to move from a transactional

system to a multidimensional approach. eLog exploits the

functionalities of the MDXGenerator library and the data

model conceptualization provided by XSD schemas. MDX-

Generator acts as the middle layer between the framework

and the OLAP engine, converting the reports requested by the

business manager through a GUI, into MDX queries executed

on the OLAP engine. In order to customize data analysis

indicators, eLog provides a simple and intuitive meta-language

for unskilled users. Moreover, to optimize the MDX query

execution on the OLAP server, we developed an algorithm for

the optimal cube identification among all the cubes available

in the data warehouse. The eLog architecture has been im-

plemented in Adobe Flex for the web interface and in Java

for the MDXGenerator. We plan to build a new version of

MDXGenerator to extend the compliance of MDX language

also for Microsoft SQL Server (so far, it is compliant with

Mondrian technology).

The preliminary tests of eLog system produced promising

results: the time needed to process even complex queries is

acceptable. We plan more experiments on the applicative use

of eLog system in the next future.

Starting from the assumption that MDX queries can be

written in several ways maintaining the same semantics and

obtaining the same result sets (e.g. operators like except, sum,

14271427

intersect are interchangeable) we will investigate, in the future,
how MDXGenerator can be enhanced in order to optimize the

query generation process, following the approach presented in

[8].

APPENDIX

(* TOKENS DECLARATION *)

(* CHAR TOKENS *)
l e t t e r = ”ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcde fgh i j k lmnopq r s t uvwxyz ” .
d i g i t = ” 0123456789 ” .
c u r r e n c y = ” $ ”
s e p a r a t o r = ” . , ”

(* OPERATOR TOKENS *)
compOpera tor = ”<” | ”>” | ”=” | ”<=” | ”>=” | ”<>” .
l o g i cO p e r a t o r = ”AND” | ”OR” | ”XOR” .
s i g nOp e r a t o r = ”+” | ”−” .
mu lOpe ra to r = ”*” | ” / ” .
no t = ”NOT” .

(* BOOLEAN OPERATOR TOKENS *)
boo l eanVa lue = ” t r u e ” | ” f a l s e ” .

(* STRING AND NUMBERS TOKENS *)
s t r i n g = { l e t t e r | d i g i t } l e t t e r { l e t t e r | d i g i t } .
c o n s t a n t = ” ” ” (” ” | (s t r i n g | number) {” ” | (

s t r i n g | number) }) ” ” ” .
mdxEnt i ty = ” [” s t r i n g | number {” ” s t r i n g | number

} ”] ” .
number = d i g i t { d i g i t } [s e p a r a t o r { d i g i t }] .

(* FUNCTION TOKENS *)
i f = ” IF ” .
f o rma t = ”FORMAT” .
c u r r e n t = ”CURRENT” .
c on c a t = ”CONCAT” .
c o n t a i n = ”CONTAIN” .
p r e v i o u s = ”PREVIOUS” .
f o l l ow i n g = ”FOLLOWING” .
c r e a t eH i e r a r c h y = ”CREATEHIERARCHY” .

(* END TOKENS *)

(* META−LANGUAGE DEFINITION *)
GetMDX = Exp r e s s i o n | Func t i o n | Fo rma tFunc t i on |

Ari tmOperand | c o n s t a n t .

(* Exp r e s s i o n s *)
Exp r e s s i o n = Ar i tmExp r e s s i on | Boo lExp r e s s i on .

Boo lExp r e s s i on = CompExpression | Log i cExp r e s s i o n |
[no t] I n S t r F u n c t i o n .

CompExpression = (” (” Ar i tmExp r e s s i on ”) ” |
a r i tmOpe rand) compOpera tor (” (” A r i tmExp r e s s i on
”) ” | a r i tmOpe rand) .

Log i cExp r e s s i o n = [no t] Log i cFa c t o r Log i cOpe r a t o r [
no t] Log i cF a c t o r {Log i cOpe r a t o r [no t]
Log i cF a c t o r } .

L og i cF a c t o r = LogicOperand | ” (” CompExpression ”) ” .
LogicOperand = boo l e anVa lue s | I n S t r F u n c t i o n .

A r i tmExp r e s s i on = (Ari tmOperand | ” (”
Ar i tmExp r e s s i on ”) ”) A r i tmOpe r a t o r (Ari tmOperand
| ” (” A r i tmExp r e s s i on ”) ”) {Ar i tmOpe r a t o r (
Ari tmOperand | ” (” A r i tmExp r e s s i on ”) ”) } .

Ar i tmOperand = [s i g nOp e r a t o r] (number | mdxEnt i ty) .
A r i tmOpe r a t o r = s i g nOp e r a t o r | mulOpe ra to r .

(* Format Func t i o n *)

Fo rma tFunc t i on = fo rma t ” (” (Exp r e s s i o n | Func t i o n |
mdxEnt i ty) ” ; ” f o rm a t S t r i n g ”) ” .

(* Remaining Fun c t i o n s *)
Func t i o n = I f F u n c t i o n | Conca tFunc t i on |

GetMemberFunct ion .

GetMemberFunct ion = Cu r r e n t F u n c t i o n |
PrevMemberFunct ion | NextMemberFunct ion .

I f F u n c t i o n = i f ” (” Boo lExp r e s s i on ” ; ” (Exp r e s s i o n |
Func t i o n | Ari tmOperand | c o n s t a n t) ” ; ” (
Exp r e s s i o n | Func t i o n | Ari tmOperand | c o n s t a n t)
”) ” .

Cu r r e n t F u n c t i o n = c u r r e n t ” (” mdxEnt i ty ”) ” .

Conca tFunc t i on = con c a t ” (” (mdxEnt i ty | c o n s t a n t |
Conca tFunc t i on | GetMemberFunct ion) ” ; ” (
mdxEnt i ty | c o n s t a n t | Conca tFunc t i on |
GetMemberFunct ion ”) ” .

I n S t r F u n c t i o n = c o n t a i n ” (” (mdxEnt i ty | c o n s t a n t |
GetMemberFunct ion) ” ; ” (mdxEnt i ty | c o n s t a n t |
GetMemberFunct ion) ”) ” .

PrevMemberFunct ion = p r e v i o u s ” (” mdxEnt i ty ”) ” .
NextMemberFunct ion = f o l l ow i n g ” (” mdxEnt i ty ”) ” .

C r e a t eH i e r a r c h yFu n c t i o n = c r e a t eH i e r a r c h y ” (”
mdxEnt i ty [” . ” mdxEnt i ty] {mdxEnt i ty [” . ”
mdxEnt i ty]} ”) ”

REFERENCES

[1] S. Bergamaschi, F. Guerra, M. Orsini, C. Sartori, and M. Vincini. A
semantic approach to etl technologies. Data Knowl. Eng., 70(8):717–
731, 2011.

[2] C. Chabot, P. Hanrahan, C. Stolte, K. Brown, T.Walker, E. Johnson, and
J. Mackinlay. Tableau software. 2005.

[3] J. H. Chang and W. S. Lee. stWin: adaptively monitoring the recent
change of frequent itemsets over online data streams. In CIKM, pages
536–539. ACM, 2003.

[4] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap
technology. SIGMOD Record, 26(1):65–74, 1997.

[5] S. G. Eick. Visualizing multi-dimensional data. SIGGRAPH Comput.
Graph., 34:61–67, February 2000.

[6] O. Gervasi, M. L. Gavrilova, V. Kumar, A. Laganà, H. P. Lee, Y. Mun,
D. Taniar, and C. J. K. Tan, editors. Computational Science and Its
Applications - ICCSA 2005, International Conference, Singapore, May
9-12, 2005, Proceedings, Part III, volume 3482 of Lecture Notes in
Computer Science. Springer, 2005.

[7] M. Golfarelli and S. Rizzi. Data Warehouse Design: Modern Principles
and Methodologies. McGraw-Hill, 2009.

[8] K. Hose, D. Klan, and K.-U. Sattler. Online tuning of aggregation tables
for olap. In Data Engineering, 2009. ICDE ’09. IEEE 25th International
Conference on, pages 1679 –1686, 29 2009-april 2 2009.

[9] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling. John Wiley & Sons, Inc., New York,
NY, USA, 2nd edition, 2002.

[10] S. Mansmann and M. H. Scholl. Exploring olap aggregates with
hierarchical visualization techniques. In Y. Cho, R. L. Wainwright,
H. Haddad, S. Y. Shin, and Y. W. Koo, editors, SAC, pages 1067–1073.
ACM, 2007.

[11] Microsoft. Mdx references, 2009.
[12] ProClarity. Business management software overview. 2005.
[13] S. Rizzi, A. Abelló, J. Lechtenbörger, and J. Trujillo. Research in

data warehouse modeling and design: dead or alive? In I.-Y. Song and
P. Vassiliadis, editors, DOLAP, pages 3–10. ACM, 2006.

[14] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query,
analysis, and visualization of multidimensional databases. Commun.
ACM, 51(11):75–84, 2008.

[15] W3C. Xsd schema, 2004.
[16] XMLA. Report portal: Zero-footprint olap web client solution. 2005.

14281428

