
Reasoning about Knowledge in Distributed
Systems Using Datalog

Matteo Interlandi

University of Modena and Reggio Emilia
{matteo.interlandi}@unimore.it

Abstract. Logic programming has been considered a viable solution
for distributed computing since the Fifth Generation Computer Systems
project [8]. Nowadays, this line of thought is gaining new verve, pushed
by the need for new programming paradigms for addressing new emerg-
ing issues in distributed computing. We argue that a missing piece in
the current state-of-the-art is the capability to express statements about
the knowledge state of distributed nodes. In fact, reasoning about the
knowledge state of (group of) nodes has been demonstrated to be fun-
damental in order to design and analyze distributed protocols [7]. To
reach this goal, we designed Knowlog: Datalog¬ augmented with a set of
epistemic modal operators, allowing the programmer to directly express
what a node ”knows” instead of low level communication details.

1 Introduction

Since the Fifth Generation Computer Systems project [8], many authors have
stated how logic programming [10, 9] could be used to express distributed pro-
grams’ specifications. New emerging trends that are arising nowadays provide
new chances for proving how logic programming can be used to tackle distributed
computing concerns. For instance, the tight coupling among distributed nodes
and the related overhead introduced by traditional mechanisms implementing
ACID properties starts to be considered unacceptable by cloud computing op-
erators [5]. To address these issues, monotonic logic programming has been em-
ployed to formally specify eventually consistent distributed programs [3].

Motivated by all these facts, our goal is to open a new direction in the inves-
tigation on how Datalog could be adopted to implement distributed systems. We
conjecture, in fact, that a missing piece in the litterature exists: this is the possi-
bility to express in Datalog statements about the knowledge state of distributed
nodes. The ability to reason about the knowledge state of (group of) nodes has
been demonstrated to be a fundamental tool in multi-agent systems in order to
specify global behaviors and properties of protocols [7]. Therefore, inspired by
previous works in distributed logic programming [9, 3] and knowledge-base pro-
grams for multi-agent systems [7], we develop Knowlog: Datalog¬ leveraged with
a set of epistemic modal operators. In this way programmers are able to directly
express nodes’ state of knowledge instead of low level communication details.
The advantage of this formalism is that it abstracts away all the mechanisms by

2 Matteo Interlandi

which the knowledge is exchanged (message passing, shared memory, etc) and
permits to explicitly reason about the nodes’ state of knowledge. To support our
assertions, we describe an implementation of the two phase commit protocol.

The remainder of the paper is organized as follows: Section 2 contains some
preliminary notations about Datalog¬ and Datalog¬ augmented with a notion of
time. Section 3 describes what we intend for a distributed system and introduces
some concepts such as global state and run that will be used in Section 4 to
specify the modal operators K, E and D. In addition, Section 4 contains the
two phase commit protocol implementation in Knowlog. The paper finishes with
Section 5 which specifies Knowlog semantics, and conclusions.

2 Preliminaries

As usual, a Datalog¬ rule is an expression in the form:

H(ū)← B1(ū1), ..., Bn(ūn),¬C1(v̄1), ...,¬Cm(v̄m)

where H(ū), Bi(ūi) and Cj(v̄j) are atoms, H, Bi, Cj are relation names in
relname and ū, ūi, v̄j are tuples of appropriate arities. Tuples are composed by
terms and each term can be a constant in the domain dom or a variable in the
set var, with both dom and var disjoined from relname. In the followings we
will interchangeably use the words predicate, relation and table. A literal is an
atom (in this case we refer to it as positive) or the negation of an atom. We will
usually refer to a ground atom as a fact. We allow built-in predicates to appear
in the body of rules. Thus, we allow relation names such as =, 6=,6, <, >, and
>. We also allow aggregate operations in rule heads in the form R(ū, Λ < µ̄ >)
with Λ one of the usual aggregate functions and < µ̄ > defining the grouping of
arguments µ̄. In this paper we assume each rule to be safe, i.e. every variable
occurring in a rule head appears in at least one positive literal of the rule body.
Then, a Datalog¬ program Π is a set of safe rules. As usual, we refer to idb(Π)
as the itensional part of the database schema, while we refer to the extensional
schema as edb(Π). Given a database schema R, a database instance is a finite
set I of facts.

As introductory example, we use the program depicted in Listing 1.1 where
we employed an edb relation link to specify the existence of a link between two
nodes. In addition, we employ an intensional relation path which is computed
starting from the link relation (r1) and recursively adding a new path when a
link exists from A to B and a path already exists from B to C (r2).

r1: path(X,Y):-link(X,Y).

r2: path(X,Z):-link(X,Y),path(Y,Z).

Listing 1.1. Simple Recursive Datalog Program

2.1 Time in Datalog¬

Distributed systems are not static, but evolving with time. Therefore it will be
useful to enrich Datalog¬ with a notion of time. For this purpose we follow the

Reasoning about Knowledge in Distributed Systems Using Datalog 3

road traced by Dedalus0 [6]. Thus, starting with considering time isomorphic to
the set of natural numbers N0, a new schema RT is defined incrementing the
arity of each relation R ∈ R by one. By convention, the new extra term, called
time suffix, appears as the last attribute in every relation and has values in N0.
We will sometimes adopt the term timestamp to refer to the time suffix value.
In fact, each tuple can be viewed as timestamped with the evaluation step in
which it is valid. For conciseness we will employ the term time-step to denote an
evaluation step. By incorporating the time suffix term in the schema definition,
we now have multiple instances for each relation, one for each timestamp. In
this situation, with I[0] it is named the initial database instance comprising
at least all ground atoms existing at the initial time 0, while with I[n] the
instance at time-step n. In accordance with this approach, tuples by default
are considered ephemeral, i.e., they are valid only for one single time-step. In
order to make tuples persistent - i.e., once derived, for example at time-step
s, they will eventually last for every time-step t ≥ s - a new built-in relation
succ with arity two and ranging over the set of natural numbers is introduced.
succ(x, y) is interpreted true if y = x + 1. Program rules are then divided in
two sets: inductive and deductive. The former set contains all the rules employed
for transferring tuples through time-steps, while the latter encompasses rules
that are instantaneous, i.e, local into a single time-step. Some syntactic sugar
is adopted to better characterize rules: all time suffixes are omitted together
with the succ relation, and a next suffix is introduced in head relations to
characterize inductive rules. For a complete discussion on how to incorporate
time in Datalog¬, we refer the reader to [6].

In Listing 1.2 the simple program of the previous section is rewritten in
order to introduce the new formalism. Rule r1 is a persistency rule which moves
towards time-steps tuples that are not been explicitly deleted. To note that
relation del P is a not mandatory idb relation which contains all the facts of P
that must be deleted (will not appear in P at state t = s+ 1).

r1: link(X,Y)@next:-link(X,Y),¬del_link(X,Y).
r2: del_link(X,Y):-link_down(X,Y).

r3: path(X,Y):-link(X,Y).

r4: path(X,Z):-link(X,Y),path(Y,Z).

Listing 1.2. Inductive and Deductive Rules

3 Distributed Logic Programming

Before starting the discussion on how we leverage the language with epistemic
operators, we first introduce our distributed system model and how communica-
tion among nodes is performed. We define a distributed message-passing system
to be a non empty finite set N = {id1, id2, ..., idn} of share-nothing nodes joined
by bidirectional communication links. Each node identifier has a value in the
domain dom but, for simplicity, we assume that a node idi is identified by its
subscript i. Thus, in the followings we consider the set N = {1, ..., n} of node
identifiers, where n is the total number of nodes in the system.

4 Matteo Interlandi

With adb we denote a new set of accessible relations encompassing all the
tables in which either facts are created remotely or they need to be delivered to
another node. These relations can be viewed as tables that are horizontally par-
titioned among nodes and through which nodes are able to communicate. Each
relation R ∈ adb contains a location specifier term [12]. This term maintains
the identifier of the node to which every new fact inserted into the relation R
belongs. Hence, the nature of adb relations can be considered twofold: for one
perspective they act as normal relations, but from another perspective they are
local buffers associated to relations stored in remote nodes. As pointed out in
[9, 6], modeling communication using relations provides major advantages. For
instance, the disordered nature of sets appears particularly appropriate to repre-
sent the basic communication channel behavior by which messages are delivered
out of order.

Continuing with the same example of previous sections, we can now employ
it to actually program a distributed routing protocol. In order to describe the
example of Listing 1.3 we can imagine a real network configuration where each
node has the program locally installed, and where each link relation reflects the
actual state of the connection between nodes. For instance, we will have the fact
link(A,B) in node A instance if a communication link between A and node B
actually exists. The location specifier term is identified by the prefix @.

r1: link(X,Y)@next:-link(X,Y),¬del_link(X,Y).
r2: del_link(X,Y):-link_down(X,Y).

r3: path(@X,Y):-link(X,Y).

r4: path(@X,Z):-link(X,Y),path(@Y,Z).

Listing 1.3. Inductive and Deductive Rules

The semantics of the program of Listing 1.3 is the same of the previous sections’
ones, even though operationally it substantially differs. In fact, in this new ver-
sion, computation is performed simultaneously on multiple distributed nodes.
Communication is achieved through rule r4 which, informally, specifies that a
path from a generic node A to node C exists if there is a link from A to another
node B and this last knows that a path exists from B to C.

3.1 Local State, Global State and Runs

In every point in time, each node is in some particular local state encapsulating
all the information the node is in possess. The local state si of a node i ∈ N can
then be defined as a tuple (Πi, Ii) where Πi is the finite set of rules composing
node i’s program, and Ii ⊆ I[n]i is a set of facts belonging to node i. We define
the global state of a distributed system as a tuple (s1, ..., sn) where si is the
node i’s state. We define how global states may change over time through the
notion of run, which binds (real) time values to global states. If we assume time
values to be isomorphic to the set of natural numbers, we can define the function
r : N→ G where G = {S1× ...×Sn} with Si be the set of possible local states for
node i ∈ N . We refer to the a tuple (r, t) consisting of a run r and a time t as a
point. If r(t) = (s1, ..., sn) is the global state at point (r, t), we define ri(t) = si

Reasoning about Knowledge in Distributed Systems Using Datalog 5

[7]. A system may have many possible runs, indicating all the possible ways the
global state of the system can evolve. We define a system as a set of runs. Using
this definition we are able to deal with a system not as a collection of interacting
nodes but, instead, directly modeling its behavior, abstracting away many low
level details. We think that this approach is particularly important in our scope
of maintaing in our language an high level of declarativity.

4 Reasoning About Knowledge in Distributed Systems

In the model we have developed so far, all computations that a node can ac-
complish are consequences of its local state. If we consider two runs of a system,
with global states respectively g = (s1, ..., sn) and g′ = (s′1, ..., s

′
n), g and g′ are

indistinguishable for node i, and we will write g ∼i g′ if i has the same local state
both in g and g′, i.e. si = s′i. It has been shown in [7] that a system S can be
viewed as a Kripke frame. A Kripke frame is a tuple F = (W,K1, ...,Kn) where
W is a non empty set of possible worlds (in our case a set of possible global
states) and Ki with i ∈ N is a binary relation in W ×W which is intended to
capture the accessibility relation according to node i: this is, (w, u) ∈ Ki if node
i consider world u possible given its information in world w. Or, in other words,
we want K to be equivalent to the ∼ relation, therefore maintaining the intuition
that a node i considers u possible in global state w if they are indistinguishable,
i.e., in both global states, node i has the same local state. In order to model this
situation, K must be an equivalence relation on W ×W .

To map each rule and fact to the global states in which they are true, we
define an interpreted system Γ as the tuple (S, π) with S a system over a set of
global states G and π an interpretation function which maps first-order clauses
to global states [7]. More formally, we build a structure over the Kripke frame
F in order to map each program Πi and each ground atom in Ii to the possible
worlds in which they are true. To reach this goal, we define a Kripke structure
M = (F , U, π) where F is a Kripke frame, U is the Herbrand Universe, π is
a function which maps every possible world to a Herbrant interpretation over
first-order clauses ΣΠ,I associated with the rules of the program Π and the
input instance I, and Π =

⋃n
i=1Πi, I =

⋃n
i=1 Ii[0]. To be precise, ΣΠ,I can be

constructed starting from the program Π and translating each rule ρ ∈ Π in
its first-order Horn clause form. This process creates the set of sentences ΣΠ .
To get the logical theory ΣΠ,I, starting from ΣΠ we add one sentence R(ū) for
each fact R(ū) in the instance [2, 11]. A valuation v on M is now a function
that assign to each variable a value in U . In our settings both the interpretation
and the variables valuation are fixed. This means that v(x) is independent of
the state, and a constant c has the same meaning in every state in which exists.
Thus, constants and relation symbols in our settings are rigid designators [7,
14]. Given a Kripke structure M, a world w ∈ W and a valuation v on M, the
satisfaction relation (M, w, v) |= ψ for a formula ψ ∈ ΣΠ,I is:

– (M,w, v) |= R(t1, ..., tn) with n = arity(R), iff (v(t1), ..., v(tn)) ∈ π(w)(R)
– (M,w, v) |= ¬ψ iif (M,w, v) |= ψ

6 Matteo Interlandi

– (M,w, v) |= ψ ∧ φ iff (M,w, v) |= ψ and (M,w, v) |= φ
– (M,w, v) |= ∀ψ iif (M,w, v[x/a]) |= ψ for every a ∈ U with v[x/a] be a

substitution of x with a constant a

We use (M,w) |= ψ to denote that (M,w, v) |= ψ for every valuation v. It could
be also interesting to know not only whether certain formula ψ is true in a certain
world, but also the formulas that are true in all the worlds of W . In particular,
a formula ψ is valid in a structure M , and we write M |= ψ, if (M,w) |= ψ for
every world w in W . We say that ψ is valid, and write |= ψ, if ψ is valid in all
structures. We now introduce the modal operator Ki in order to express what a
node i ”knows”, namely which of the sentences in ΣΠ,I are known by the node
i. Given ψ ∈ ΣΠ,I, a world w in the Kripke structure M, the node i knows ψ
- we will write Kiψ - in world w if ψ is true in all the worlds that i considers
possible in w [7]. Formally:

(M, w, v) |= Kiψ iff (M, u, v) |= ψ for all u such that (w, u) ∈ Ki

This definition of knowledge has the following valid properties that are called
S5 :

1. Distributed Axiom: |= (Kiψ ∧Ki(ψ → φ))→ Kiφ
2. Knowledge Generalization Rule: For all structures M , if M |= ψ then M |=
Kiψ

3. Truth Axiom: |= Kiψ → ψ
4. Positive Introspection Axiom: |= Kiψ → KiKiψ
5. Negative Introspection Axiom: |= ¬Kiψ → Ki¬Kiψ

Informally, the first axiom allows us to distribute the epistemic operator Ki over
implication; the knowledge generalization rule instead says that if ψ is valid, then
so is Kiψ. This rule differ from the formula ψ → Kiψ, in the sense that the latter
tells that if ψ is true, then node i knows it, but a node does not necessarily know
all things that are true. Even though a process may not know all facts that are
true, axiom 3 says that if it knows a fact, then it is true. The last two properties
say that nodes can do introspection regarding their knowledge: they know what
they know and what they do not know [7].

4.1 Incorporating Knowledge: KnowlogK

In the previous section we described how knowledge assumptions can be ex-
pressed using first-order Horn clauses representing our program. We can now
move back to the rule form. We use symbols � and � to denote a (possibly
empty) sequence of modal operators Ki, with i specifying a node identifier.
Given a sentence in the modal Horn clause form, we use the following statement
to express it in a rule form:

�(H ← B1, ..., Bn,¬C1, ...,¬Cm) (1)

with n,m ≥ 0 and each positive literal in the form �R, while negative literals
are in the form ��R.

Reasoning about Knowledge in Distributed Systems Using Datalog 7

Definition 1. The modal context � is the sequence - with the maximum length
of one - of modal operators K appearing in front of a rule.

We put some restriction on the sequence of operators permitted in �.

Definition 2. Given a (possibly empty) sequence of operators �, we say that �
is in restricted form if it does not contain KiKi subsequences.

Definition 3. A KnowlogK program is a set of rules in the form (1), containing
only (possibly empty) sequences of modal operators in the restricted form and
where the subscript i of each modal operator Ki can be a constant or a variable.

Informally speaking, given a KnowlogK program, with the modal context we are
able to assign to each node the rules the node is responsible for, while atoms
and facts residing in the node i are in the form Ki �R. In order to specify how
communication is achieved we define communication rules as follows:

Definition 4. A communication rule in KnowlogK is a rule where no modal
context is set and body atoms have the form Ki � R - they are all prefixed with
a modal operators pointing to the same node - while the head atom has the form
Kj �R′, with i 6= j.

In this way, we are able to abstract away all the low level details about how
information is exchanged, leaving to the programmer just the task to specify
what a node should know, and not how.

The Two-Phase-Commit Protocol Inspired by [4], we implemented the two-
phase-commit protocol (2PC) using the epistemic operator K. 2PC is used to
execute distributed transaction and it is divided in two phases: in the first phase,
called the voting phase, a coordinator node submits to all the transaction’s par-
ticipants the willingness to perform a distributed commit. Consequently, each
participant sends a vote to the coordinator, expressing its intention (a yes vote in
case it is ready, a no vote otherwise). In the second phase - namely the decision
phase - the coordinator collects all votes and decides if performing global commit
or abort. The decision is then issued to the participants which act accordingly. In
the 2PC implementation of Listing 1.4, we assume that our system is composed
by three nodes: one coordinator and two participants. We considerably simplify
the 2PC protocol by disregarding failures and timeouts actions, since our goal is
not an exhaustive exposition of the 2PC. In addition, we employ some syntactic
sugar to have a more clean code: we omit the modal context in each rule, and
instead we group rules in programs identified by a name and the identifier of the
node where the program should be installed. If the program must be installed on
multiple nodes, we permit to specify, as location, a relation ranging over node
identifiers.

\\Initialization at coordinator

#Program Initialization @C

r1: transaction(Tx_id,State)@next:-transaction(Tx_id,State),

8 Matteo Interlandi

¬Kcdel_transaction(Tx_id,State).
r2: log(Tx_id,State)@next:-log(Tx_id,State).

r3: part_cnt(count<N>):-participants(N).

r4: transaction(Tx_id,State):-log(Tx_id,State).

r5: participants(P1).

r6: participants(P2).

\\Initialization at participants

#Program Initialization @participants

r7: transaction(Tx_id,State)@next:-transaction(Tx_id,State),

¬Kcdel_transaction(Tx_id,State).
r8: log(Tx_id,State)@next:-log(Tx_id,State).

\\Decision Phase at coordinator

#Program DecisionPhase @C

r9: yes_cnt(Tx_id,count<Part>):-vote(Vote,Tx_id,Part),Vote == "yes").

r10: log(Tx_id,"commit")@next:-part_cnt(C),yes_cnt(Tx_id,C1),C==C1,

State=="vote-req",transaction(Tx_id,State).

r11: log(Tx_id,"abort"):-vote(Vote,Tx_id,Part),Vote == "no",

transaction(Tx_id,State),State =="vote-req".

\\Voting Phase at participants

#Program VotingPhase @participants

r12: log(Tx_id,"prepare"):-State=="vote-req",Kctransaction(Tx_id,State).

r13: log("abort",Tx_id):-log(Tx_id,State),State=="prepare",db_status(Vote),

Vote=="no".

\\Decision Phase at participants

#Program DecisionPhase @participants

r14: log(Tx_id,"commit"):-log(Tx_id,State_l),State_l=="prepare",

State_t=="commit",Kctransaction(Tx_id,State_t).

r15: log(Tx_id,"abort"):-log(Tx_id,State_l),State_l=="prepare",

State_t=="abort",Kctransaction(Tx_id,State_t).

\\Communication
r16: Kxtransaction(Tx_id, State):-Kcparticipants(@X),Kctransaction(Tx_id,State).

r17: Kcvote(Vote,Tx_id,"sub1"):-Kp1log(Tx_id,State),State=="prepare",

Kp1db_status(Vote).

r18: Kcvote(Vote,Tx_id,"sub2"):-Kp2log(Tx_id,State),State=="prepare",

Kp2db_status(Vote).

Listing 1.4. Two Phase Commit Protocol

4.2 Incorporating Higher Levels of Knowledge: Knowlog

Rules r10, r11 of Listing 1.4 indicates that each participant, once written "prepare"

in the log, sends to the coordinator its status together with its identifier. Then,
the votes are aggregated at coordinator side and the final decision is issued.
This process can also be seen in another way: the coordinator node will deliver

Reasoning about Knowledge in Distributed Systems Using Datalog 9

"commit" for transaction Tx id if it knows that every participant knows the
fact vote("yes",Tx id); "abort" otherwise. Consequently, the decision phase
at the coordinator will become as in Listing 1.5.

r10_a: log(Tx_id,"commit")@next:-Ks1vote("yes",Tx_id),Ks2vote("yes",Tx_id),

transaction(Tx_id,State),State=="vote-req".

r11_a: log(Tx_id,"abort")@next:-Kxvote(Vote,Tx_id),Vote=="no",

participants(X),transaction(Tx_id,State),State=="vote-req".

Listing 1.5. 2PC coordinator’s program revisited

We chose this new revisited form described in Listing 1.5 for a purpose, in
fact we want to show that other types of knowledge could be appealing to be
incorporated in our language. For example, a node could be interested not only
in knowing some fact, but also in knowing if every node in the system know
something (rule r1) or a new information is derived by combining the knowledge
belonging to different nodes (rule r2). The discussion about higher levels of
knowledge can be started pointing out that both rules in Listing 1.5 have a
common denominator: i.e., the notion of knowledge inside a group of nodes. In
fact, both the above mentioned rules are used to declare which is the state of
knowledge inside the group of participant nodes. Thus, given a non empty set
of nodes G, we can hence augment KnowlogK with modal operators EG and
DG, which respectively are informally stating that ”every node in the group G
knows” and ”it is distributed knowledge among the nodes in G”. From a more
operational point of view, EGψ states that the sentence ψ is replicated in all the
nodes belonging to G, while DGψ states that ψ is fragmented among the nodes
in G. We can easily extend the definition of satisfiability to handle the two new
types of knowledge just introduced. EGψ is true exactly if everyone in the group
G know ψ:

(M,w, v) |= EGψ iff (M,w, v) |= Kiψ for all i ∈ G

On the other side, a group G has distributed knowledge of ψ if the coalesced
knowledge of the members of G implies ψ. This is accomplished by eliminating
all worlds that some agent in G considers impossible:

(M,w, v) |= DGψ iff (M,u, v) |= ψ for all t that are (w, u) ∈
⋂
i∈G

Ri

Not surprisingly, for both EG and DG axioms analogous to the Knowledge Ax-
iom, Distribution Axiom, Positive Introspection Axiom, and Negative Introspec-
tion Axiom all hold. In addition, distributed knowledge of a group of size one is
the same as knowledge, so if G contains only one node i [7]:

|= D{i}ψ ↔ Kiψ

and the larger the subgroup, the greater the distributed knowledge of that sub-
group is :

|= DGψ → DG′ψ if G ⊆ G′

10 Matteo Interlandi

Before reformulating the definition of Knowlog and rewriting Listing 1.5 using
the new operators, we first update the definition 2 in order to incorporate the
new operators DG and EG.

Definition 5. Given a (possibly empty) sequence of operators �, we say that
� is in restricted form if it does not contain either KiKi, DGDG or EG′EG′

subsequences, with i specifying a node identifier, G a group of nodes G ⊆ N and
G′ is singleton.

Definition 6. A Knowlog program is a KnowlogK program augmented with op-
erators EG and DG, with G ⊆ N and where the sequence of operators � is in
the restrict form of definition 5.

Listing 1.6 shows Knowlog version of Listing 1.5.

r10_b: log(Tx_id,"commit")@next:-Exvote("yes",Tx_id),participants(X),

transaction(Tx_id,State),State=="vote-req".

r11_b: log(Tx_id,"abort")@next:-Dxvote(Vote,Tx_id),Vote=="no",

participants(X),transaction(Tx_id,State),State=="vote-req".

Listing 1.6. Knowlog 2PC coordinator’s program

Operationally, EG is used when we want that a fact, to be considered true, is
correctly replicated in every node i ∈ G. On the other side, DG is employed
when facts that are fragmented inside multiple relations distributed in the node
enclosed in G must be assembled in one place for computation. Employing the
EG operator in the head of communication rules we are able to express the
sending of a message to multiple destinations, therefore emulating the multicast
primitive behavior.

Definition 7. A communication rule in Knowlog is a KnowlogK communica-
tion rule where the body may contains atoms both in the form DG � R and
EG � R, while head atoms may also have the form EG � R, with R a relation
and G ⊆ N .

As a future work we will investigate how the operator D can be used in front of
communication rule to implement data dissemination [15].

5 Knowlog Semantics

The first step towards the definition of the Knowlog semantics will be the spec-
ification of the reified version of Knowlog. For this purpose, we augment dom
with a new set of constants 4 which will encompass the modal operators sym-
bols. We also assume a new set of variables O that will range over the just
defined set of modal operator elements. We then construct RTK adding to each
relation R ∈ RT a new term called knowledge accumulator and a new set of
build-in relations K, D, E and ⊕. A tuple over the RTK schema will have the
form (k, t1, ..., tn, s) where k ∈ O ∪4 identify the knowledge accumulator term,
s ∈ S ∪ N and t1, ..., tn ∈ var ∪ dom. Conversely, a tuple over adb relations,

Reasoning about Knowledge in Distributed Systems Using Datalog 11

i.e., relations in the head of at least one communication rule, will have the form
(k, l, t1, ..., tn, s), with l the location specifier term. If the knowledge operator
used in front of a non-adb relation is a constant, i.e. KsKrinput("value"), the
reified version will be input(Y,"value",n),Y = Ks ⊕ Kr for example at time-
step n. The operator ⊕ is hence employed to concatenate epistemic operators.

Instead, in case the operator employes a variable to identify a particular
node (as in rule r10 a of Listing 1.5) or a set of nodes (as shown in rule r10 b

of Listing 1.6), we need to introduce in RTK relations K(X,Y), E(<X>,Y), and
D(<X>,Y) in order to help us in the effort of building the knowledge accumu-
lator term. The first term of the K relation is a node identifier i ∈ N (respec-
tively a set of node identifiers for relations E, and D) and the Y term is a value
in 4 determined by the relation name and the node identifier(s). So for ex-
ample, the reified version of Exvote("yes",Tx id),participants(X) will be
E(<X>,Y),vote(Y,"yes",Tx id,n),participants(X).

For what concern communication rules, the process is the same as above,
but this time we have to fill also the location specifier field of the head-relation.
To accomplish this, if the head relation R ∈ adb is in the form Ki�R(t1, ..., tn),
the reified version will be R(Ki�, i, t1, ..., tn, s). On the other side, if the head
relation is in the form EG�R(t1, ..., tn) the rule that includes it, is rewritten in m
rules, one for each node identifier in G, and each of them having the head relation
in the form Ki�R(t1, ..., tn) with i ∈ G. The reified version is then computed as
described above. Using this semantics, nodes are able to communicate using the
mechanism described in Section 3.

5.1 Operational Semantics

Given as input a Knowlog program Π in the reified version, first Π is separated
in two subset: Π l containing local rules (informally these are the rules that
the local nodes i knows) and Πr containing rules that must be installed in
remote nodes. These last are rules having as a modal context Kj with j, i ∈ N ,
i the identifier of the local node and i 6= j. Following the delegation approach
illustrated in [1] given a program Πi local to node i ∈ N , we denote with
Πr
ij the remote rules in i related to node j and with Πj ← Πr

ij the action of
installing Πr

ij in j’s program. For what concern the evaluation of local rules, we

partition the local program Π l in inductive and deductive rule sets, respectively
Πi and Πd. Then a pre-processing step orders the deductive rules following the
dependency graph stratification. After this pre-processing step, the model MΠ

is computed. In order to evaluate the stratified program Πd we use the semi-
naive algorithm depicted in [16]. To correctly evaluate rules and facts with modal
operators, the saturation (Sat) and the normalization (Norm) operators are used
to assist the immediate consequence operators TΠd [14]. This because Knowlog
facts and rules are labeled by modal operators and therefore the immediate
consequence operator must be enhanced in order to be employed in our context.
More precisely, given a Knowlog instance I as input, Sat(I) saturate facts in the
instances following operators’ properties. Lastly, the Norm operator converts to
restricted form the modal operators in TΠd(Sat(I)).

12 Matteo Interlandi

6 Conclusion and Future Work

We have presented Knowlog, a programming language for distributed systems
based on Datalog¬ leveraged with a notion of time and modal operators. We
described the communication and knowledge model behind Knowlog and we
introduce as example, an implementation of the two phase commit protocol. As
a future work, we will incorporate in Knowlog the common knowledge operator
that has been proven to be linked to concepts such as coordination, agreement
and consistency [7]. The successive step will be the definition in Knowlog of
weaken forms of common knowledge such as eventual common knowledge.

References

1. Abiteboul, S., Bienvenu, M., Galland, A., Antoine, E.: A rule-based language for
web data management. In: PODS ’11, New York, NY, USA, ACM (2011) 293–304

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

3. Alvaro, P., Conway, N., Hellerstein, J., Marczak, W.R.: Consistency analysis in
bloom: a calm and collected approach. In: CIDR. (2011) 249–260

4. Alvaro, P., Condie, T., Conway, N., Hellerstein, J.M., Sears, R.: I do declare:
consensus in a logic language. Operating Systems Review 43(4) (2009) 25–30

5. K. Birman, G. Chockler, and R. van Renesse. Toward a cloud computing research
agenda. SIGACT News, 40(2):68–80, June 2009.

6. P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and R. Sears.
Dedalus: Datalog in time and space. Datalog Reloaded - First International Work-
shop, Oxford, UK, March 16-19, 2010. Revised Selected Papers, volume 6702 of
Lecture Notes in Computer Science. Springer, 2011.

7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge, MA, USA (2003)

8. K. Furukawa. Logic programming as the integrator of the fifth generation computer
systems project. Commun. ACM, 35(3):82–92, Mar. 1992.

9. Hellerstein, J.M.: The declarative imperative: experiences and conjectures in dis-
tributed logic. SIGMOD Rec. 39 (September 2010) 5–19

10. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16
(May 1994) 872–923

11. Lloyd, J.: Foundations of logic programming. Symbolic computation: Artificial
intelligence. Springer (1987)

12. Loo, B.T., Condie, T., Garofalakis, M., Gay, et al. : Declarative networking: lan-
guage, execution and optimization. In: SIGMOD ’06, New York, NY, USA, ACM
(2006) 97–108

13. Ludäscher, B.: Integration of Active and Deductive Database Rules. Volume 45 of
DISDBIS. Infix Verlag, St. Augustin, Germany (1998)

14. Nguyen, L.A.: Foundations of modal deductive databases. Fundam. Inf. 79 (Jan-
uary 2007) 85–135

15. N. Suri, G. Benincasa, S. Choy, S. Formaggi, M. Gilioli, M. Interlandi, and S. Rota.
Disservice: a peer-to-peer disruption tolerant dissemination service. In Proceed-
ings of the 28th IEEE conference on Military communications, MILCOM’09, pages
2514–2521, Piscataway, NJ, USA, 2009. IEEE Press.

16. Zaniolo, C.: Advanced database systems. Morgan Kaufmann series in data man-
agement systems. Morgan Kaufmann Publishers (1997)

