
Università degli Studi di Modena e Reggio Emilia
Dipartimento di Ingegneria “Enzo Ferrari” di Modena

Corso di Laurea Magistrale in Ingegneria Informatica

INTERROGAZIONE E RAPPRESENTAZIONE VISUALE
DI GRANDI MOLI DI DATI DI STREAM

VISUAL QUERYING AND RESULTS VISUALIZATION
OVER VERY LARGE DATA STREAMS

Relatore: Candidato:
Prof. Sonia Bergamaschi Alberto Malagoli

Correlatore:
Dott. Ing. Massimo Mecella

Anno Accademico 2011/2012

2

Contents

I Summary in Italian 7

II Introduction 13

III Smart Vortex 19

1 Project Overview 21

2 Main concepts 25

2.1 Meta-data . 25

2.2 Database Management System (DBMS) 25

2.3 Query . 26

2.4 Query Language . 26

2.5 Data Stream . 26

2.6 Data Stream Management System (DSMS) 26

2.7 Continuous Query (CQ) . 27

2.8 Continuous Query Language (CQL) 28

3 Data Streams 31

3.1 SCSQ . 32

3.2 AmosQL . 34

3.3 SCSQL . 34

4 Requirements 37

4.1 User interface requirements 37

4.2 Use cases . 41

3

4 CONTENTS

4.2.1 ISP-1: Data streaming computation from stored data . 42

4.2.2 ISP-2: Computation of real-time data streams 43

4.2.3 ISP-3: Data streams within collaborative environments 44

4.2.4 Meta Use Case . 44

IV State of the Art 49

5 Visual Query Systems 51

5.1 Query By Diagram . 53

5.1.1 QBD* . 53

5.1.2 MURAL . 53

5.2 Query By Icon . 54

5.2.1 QBB . 54

5.2.2 QBI . 55

5.2.3 The Flow Metaphor . 56

5.2.4 Kaleidoquery . 58

5.2.5 Visual . 59

5.3 Visual Query Comparison . 60

6 Visual Analysis 63

6.1 Data and View Speci�cation 64

6.1.1 Visualize . 64

6.1.2 Filter . 64

6.1.3 Sort . 65

6.1.4 Derive . 65

6.2 View Manipulation . 65

6.2.1 Select . 65

6.2.2 Navigate . 66

6.2.3 Coordinate . 67

6.2.4 Organize . 68

6.3 Process and Provenance . 69

CONTENTS 5

V Results 71

7 Visual Query Language (VQL) 73

7.1 VQL elements . 74

7.1.1 Object . 74

7.1.2 Function . 74

7.1.3 Select . 75

7.1.4 Conditions . 75

7.1.5 Parameters . 76

7.1.6 Connection . 77

7.1.7 Handle . 78

7.2 Visual Query example . 79

8 Query translation 81

8.1 De�nitions . 81

8.1.1 Boolean operators . 82

8.1.2 Objects names . 83

8.1.3 Generic graph . 83

8.1.4 Functions used in the algorithms 84

8.2 Conditions of translatability 84

8.2.1 Hypothesis . 85

8.2.2 Correctness tests . 85

8.3 Algorithm . 91

8.4 Examples . 99

8.4.1 Simple example . 99

8.4.2 Complex example . 102

9 Prototype 111

9.1 Technologies . 111

9.2 Architecture . 112

9.2.1 Web application . 112

9.2.2 FDSMS bridge . 114

9.2.3 Architecture overview 114

9.3 Web application . 115

9.3.1 Visual Query Editor 115

6 CONTENTS

9.3.2 Data visualization . 128

9.3.3 Query execution . 130

9.3.4 Dashboard . 133

9.3.5 Saved queries . 134

9.3.6 Templates . 135

9.3.7 Comments . 135

9.3.8 Overall view . 136

9.4 FDSMS Bridge . 137

9.4.1 Query execution . 138

9.4.2 Types and functions retrieving 142

9.5 User DataBase . 143

VI Conclusions and Future Works 153

10 Implemented requirements 155

11 Considerations and limitations 159

11.1 Visual Query Language . 159

11.2 Query translation algorithm 160

11.3 Visual Query Editor . 160

12 Future Works 163

VII References 167

Part I

Summary in Italian

7

9

La progettazione e la produzione di prodotti innovativi e altamente special-
izzati comporta un ciclo di vita complesso, a partire da un'idea che passa
attraverso lo sviluppo, la fabbricazione, il funzionamento, la manutenzione e
lo smaltimento.

Durante l'intero ciclo di vita del prodotto, vengono generati molti �ussi di
dati di diverso tipo, tra cui:

• dati provenienti da sensori e apparecchiature di analisi;

• �ussi di dati di simulazione e di collaudo;

• �ussi di dati di progettazione;

• �ussi di dati multimediali di collaborazione;

• �ussi rivacati da eventi di alto livello.

Questi �ussi di dati vengono creati ed utilizzati in ogni fase del ciclo di vita
del prodotto.

Il progetto di ricerca europeo Smart Vortex si colloca in questo contesto.
Nell'industria, la quantità di dati prodotti e raccolti dai �ussi di produzione
precedentemente citati è in continuo aumento. Questo porta a problemi e
di�coltà di analisi degli stessi, da parte degli operatori umani; a volte, dati
che sarebbero importanti non vengono nemmeno presi in considerazione. Per
migliorare le prestazioni nei processi decisionali, nella progettazione ingegner-
istica e nella decisione collaborativa, il progetto Smart Vortex si propone di
studiare un modello che catturi le informazioni pertinenti e le renda disponi-
bili nel posto giusto al momento giusto.

Il progetto a�ronta il problema della estrazione di informazioni utili da una
grande mole di dati; inoltre, un obiettivo principale è quello di migliorare
il lavoro collaborativo ed il processo decisionale, condividendo queste infor-
mazioni tra le persone. Il lavoro di collaborazione in sé genera �ussi di dati
che devono essere raccolti ed utilizzati. Più in generale, lo scopo del progetto
Smart Vortex "... è quello di fornire una infrastruttura tecnologica costituita
da una suite completa di strumenti interoperanti, servizi e metodi per la
gestione intelligente e l'analisi di �ussi di dati molto grandi, con lo scopo di
raggiungere una migliore collaborazione e una migliore presa di decisioni in
progetti di collaborazione su larga scala, riguardanti progettazioni industriali
innovative".

Smart Vortex produrrà diversi componenti, per implementare le funzional-
ità necessarie. Un Data Stream Management System (DSMS) raccoglierà
i �ussi di dati, eseguirà manipolazioni su di essi e o�rirà funzionalità per

10

l'interrogazione e il recupero dei dati. Verrà creato inoltre un insieme di
regole ed un piano di accesso ai dati, per permettere il lavoro collaborativo
tra individui, ed anche tra industrie in competizione tra loro: tale modello
permetterà l'accesso a dati condivisi, pur garantendo la preservazione delle
proprietà intellettuali.

Inoltre, un componente chiave del progetto sarà una interfaccia visuale per
l'interrogazione dei �ussi di dati, che ne permetterà il recupero e l'analisi
attraverso un Visual Query Language (linguaggio visuale di interrogazione),
sempli�cando tale operazione e permettendo la costruzione di interrogazioni
anche complesse ad utenti non esperti. L'interfaccia gra�ca mostrerà poi i
risultati delle interrogazioni attraverso opportune visualizzazioni, portando
in risalto ed estraendo informazioni utili da tali �ussi di dati.

Il lavoro presentato in questo documento di tesi si focalizza sulla realizzazione
di tale componente.

Questo lavoro è stato svolto durante il secondo anno, su quattro, del progetto
Smart Vortex, ed è stato indirizzato alla realizzazione degli obiettivi preposti,
ovvero la progettazione di un Visual Query Language per la composizione
sempli�cata di query, e la visualizzazione dei risultati dell'interrogazione sul
DSMS adottato, seguendo i princìpi de�niti dal progetto. Una interfaccia
utente completa delle necessarie funzionalità è quindi stata progettata, com-
prendente strumenti per la composizione di query visuali, per la de�nizione di
visualizzazioni appropriate dei risultati, e per la organizzazione di tali visu-
alizzazioni in cosiddette �dashboard�. In�ne, è stato realizzato un prototipo
funzionante dell'interfaccia utente, implementato come applicazione web, ed
un server TCP per la comunicazione con il sottostante DSMS.

Il Visual Query Language che è stato progettato, è pensato per la rappresen-
tazione in forma visuale dei costrutti de�niti da SCSQL, il linguaggio per la
formulazione di query, anche su stream, adottato nel progetto Smart Vortex.
Query scritte in SCSQL vengono poi eseguite su SCSQ, il DSMS su cui si
appoggia il progetto; esso utilizza oggetti e tipi per la rappresentazione dei
dati, e fa un forte uso di funzioni (o metodi). Il Visual Query Language
presentato segue quindi questi stessi princìpi, facendo proprio il concetto di
composizione di funzioni ed estendendolo anche ad altri costrutti del lin-
guaggio. Nella sua de�nizione si sono poi adottati concetti generali della
rappresentazione dell'informazione, quali ad esempio l'uso di forme geomet-
riche e colori distinti per una migliore categorizzazione e riconoscimento dei
vari elementi visivi. Non tutti i costrutti introdotti da SCSQL sono però stati
tradotti in una loro controparte visuale, ma solo quelli necessari alla compo-
sizione di query del tipo SELECT-FROM-WHERE (dall'SQL). Questo non
rappresenta però una vera limitazione, in quanto tale linguaggio visuale di

11

query è pensato proprio per questo tipo di utilizzo, ed altre operazioni, quali
la manipolazione e la de�nizione dei dati sottostanti, esulano dai suoi scopi.

È stato quindi proposto un algoritmo per la traduzione di una query visuale
in una testuale, scritta nel linguaggio SCSQL. L'algoritmo fa uso di una
rappresentazione a grafo della query visuale, e tramite una navigazione dello
stesso viene composta la sua controparte testuale. Prima della traduzione
vera e propria, l'algoritmo esegue alcuni controlli di correttezza della query
visuale, che non può essere tradotta se non rispetta questi vincoli.

Il prototipo sviluppato, come già accennato, si compone di due parti: una
applicazione web, che implementa l'interfaccia utente, ed un server TCP,
chiamato FDSMS Bridge, per la comunicazione con il DSMS, SCSQ.

L'applicazione web, scritta utilizzando la tecnologia JSP su web server Tom-
cat, si preoccupa, come detto, di creare l'interfaccia utente, e di gestire le
comunicazioni tra il client web ed il DSMS, per l'esecuzione delle query.
All'utente viene messa a disposizione una interfaccia per la composizione
delle query visuali, chiamata Visual Query Editor, completa di funzionalità
che lo aiutano e guidano in questo compito; tali funzionalità evitano, almeno
in parte, la costruzione di query formalmente non corrette. Un'altra interfac-
cia è poi adibita alla de�nizione delle necessarie visualizzazioni per la rappre-
sentazione dei dati ritornati dalle interrogazioni. Una serie di gra�ci (a linee,
a barre, a punti, ...) vengono messi a disposizione dell'utente, il quale può
decidere in che modo comporre tali visualizzazioni in modo da estrarre dai
dati le informazioni più interessanti o più consone ai suoi obiettivi. In�ne, le
visualizzazioni dei risultati di query possono essere composte ed organizzate
su una �dashboard�, così da poter analizzare o monitorare dati provenienti da
diverse sorgenti, comparandoli tra loro o localizzando eventuali malfunzion-
amenti. Il web server fa uso di un DataBase MySQL per la memorizzazione
delle query visuali e di altri dati di con�gurazione dell'interfaccia utente.

FDSMS Bridge è, come accennato, un server che permette la comunicazione
col sottostante DSMS attraverso messaggi testuali scambiati col protocollo
TCP. Scritto in Java, fa uso di una apposita libreria, scritta anch'essa in Java,
per lo scambio di dati con SCSQ. Il suo compito è quello di ricevere richieste
di esecuzione di query da parte del client, passarle ad SCSQ per l'esecuzione,
e ritornare al client i risultati. Essendo tali query eseguite su stream di dati,
il �usso di risultati ottenuto è possibilmente in�nito; le connessioni tra client
e FDSMS Bridge possono quindi essere persistenti, ed eseguite su thread
paralleli. Il client ha poi il compito di recuperare i nuovi risultati, man mano
che questi vengono messi a disposizione da SCSQ. Tutte le comunicazioni
tra i diversi componenti sono asincrone, e fanno uso di messaggi testuali in
formato JSON.

12

Il prototipo è stato progettato pensando ad un suo utilizzo da parte di un
utente singolo, senza funzionalità per la collaborazione con altri utenti, come
da speci�che per questo anno di sviluppo del progetto. Per l'anno successivo,
tuttavia, è piani�cata l'estensione dell'interfaccia per l'utilizzo in un ambi-
ente di lavoro collaborativo, in cui è possibile scambiare e accedere a risorse
comuni, tra cui query visuali e dashboard. È inoltre previsto lo sviluppo di
un prototipo su altre piattaforme operative, quali dispositivi mobili e tablet.
Un ulteriore obiettivo sarà quello di eseguire dei test di usabilità sulle in-
terfacce progettate, così da evidenziarne i punti deboli e apportare dovute
modi�che.

Part II

Introduction

13

15

The design and the production of innovative and highly specialized prod-
ucts imply a complex lifecycle, starting from an idea which goes through
development, manufacture, operation, maintenance and disposal [1].

During the entire lifecycle, many kind of data streams are generated. Among
the others, these data streams are:

• streams from sensors and analysis equipment;

• streams of simulation and testing data;

• streams of design data;

• streams of multimedia collaboration data;

• streams of higher level inferred events.

These data streams are created and even consumed in every phase of the
product lifecycle.

The European research project Smart Vortex is placed in this context. In the
industry, the amount of collected data in each phase of a product lifecycle is
rapidly increasing. This leads to issues and di�culties for human operators
on analyzing them; sometimes important data are even not processed at all.

To improve performances in the decision making process, the engineering
design and the collaborative decision, the Smart Vortex project aims for
studying a framework that captures the relevant information and delivers it
to the right place at the right time.

The project addresses the problem of the extraction of hidden but useful in-
formation from a great amount of data; moreover, a main vision is to improve
the collaborative work and the decision making process by sharing this infor-
mation between people. The collaborative work generates itself data streams
that need to be collected and consumed. More generally, the purpose of the
Smart Vortex project �...is to provide a technological infrastructure consist-
ing of a comprehensive suite of interoperable tools, services, and methods
for intelligent management and analysis of massive data streams to achieve
better collaboration and decision making in large-scale collaborative projects
concerning industrial innovation engineering� [1].

The Smart Vortex project will produce several components, to implement
the needed functionalities. A Data Stream Management System (DSMS)
will collect data streams, will perform manipulations on them and will o�er
functionalities to query them. A rules and policy framework will also be
created. Collaborative work is a key point of the project, and sometimes

16

even several competing industry can collaborate. While working together,
the framework will allow control over cross-organizational IPR1 management.

Furthermore, a key component of the project will be a Visual Query Interface
to perform querying operations over data streams through a Visual Query
Language, easing the task and giving the opportunity to compose complex
queries even to non-expert users. The graphical interface will also display the
composed queries results with appropriate visualizations, exploiting useful
information extraction from data streams.

The work presented in this document is part of this component, that is the
Visual Query Interface.

Since this thesis work has been done during year 2 of the entire project
cycle, lasting four years, it has addressed the objective of designing a Visual
Query Language to easily compose queries over the adopted DSMS, and
to visualize their results in a proper way, following project's principles and
requirements. A comprehensive user interface has been designed, with tools
to compose Visual Queries, de�ne visualizations to display the queries results,
and organize these visualizations on a so called �dashboard�. A working
prototype of this user interface has been then realized, implemented as a web
application; the web application communicates with another ad-hoc TCP
server, developed in parallel during the same thesis work, which sends queries
to execute to the DSMS, and gets results back.

The second part of this document presents a more detailed description of
the Smart Vortex project. Data streams are contextualized, and the adopted
FDSMS, SCSQ, is introduced, along with its own query language, SCSQL.
Project requirements are discussed, with usage scenarios describing a plau-
sible interaction between the system and people in a real work example, as
suggested from the industrial partners.

In the third part, an overview of the Visual Query Systems and Visual Anal-
ysis tools are presented. A Visual Query System (VQS) can be de�ned as
a system that uses a visual representation for both the domain of interest
and the related requests on it. Visual Query Systems are studied since the
early 1990s. In the last years there has been an increasing interest, as shown
by the amount of published research papers. A theoretical background is
provided and some relevant example are presented. Visual Analysis is a �eld
derived from Information Visualization. While Information Visualization is
focused on a static presentation of a great amount of data, Visual Analysis
focuses on analytical reasoning through visual interfaces. The main concepts
are presented and some valuable example are shown.

1IPR, Intellectual Property Rights.

17

The fourth part is dedicated to the description of the accomplished results.
The designed Visual Query Language is presented, along with its basic con-
structs and the explanation of design choices. The translation algorithm,
from a Visual Query to a textual query written in the SCSQL language, is
described, giving a mathematical explanation of it. After that, the developed
prototype is presented. A �rst overview of the adopted technologies and the
overall architecture is given, highlighting how the di�erent components inter-
act and communicate. A single section is then dedicated to each component:
the Web Application, the FDSMS Bridge and the User DataBase. The Web
Application is the real core of the system, which handles the communications
between the Web client and the FDSMS through the web server. It also gen-
erates the user interface, where a user can compose Visual Queries by the
Visual Query Editor, choose how to visualize queries results, and combine
di�erent visualizations into a �dashboard�, for monitoring or analysis pur-
pose. The FDSMS Bridge is a TCP server used to execute SCSQL queries
on SCSQ (the FDSMS), and gets results back. These queries are the ones
composed by the users through the Visual Query Editor, translated into tex-
tual queries and then executed; when results are returned from SCSQ, they
are displayed on the chosen visualizations. The User DataBase is used to
store composed Visual Queries and user-related con�gurations.

The �fth part summarizes the achieved results and the implemented project's
requirements, with a discussion about design choices and their limitations,
addressing possible improvements and solutions to known problems. It ends
with a description of the work planned for the next year of the project.

This work is therefore totally related with the Smart Vortex project. Part of
the information presented in this document contributed to the composition of
the project deliverable's documentation. Furthermore, the realized prototype
has been presented as a work demonstration during the Smart Vortex second
year review meeting.

18

Part III

Smart Vortex

19

Chapter 1

Project Overview

In the last years there a trend in the industry emerged which fosters the o�er
of intangible assets within vendor-customer relation even if tangible assets
represent a high volume and a very precious part of the delivery. These
underlying business models are called �Service Oriented Models� where the
product o�er is no longer the equipment itself, but the contractual agreement
to speci�c performances of intangible features like �transportation volume,
reliability, physical parameters like torque, power, cutting speed or other
measurable parameters� which are taken as contractual basis for between
vendor and customer. While leasing and rental models still calculate the
�nancing of the used equipment based on price list items which are seen as
goods service oriented models de�ne the goods only as means to an end to
reach a speci�c business goal.

From the end 90s �rst business models based on novel licensing schemas like
�Pay per Use�, �Term Deals with License Remix�, �All you can Eat� and
other service based licensing models changed the mindset how to make busi-
ness started in the software oriented IT and CAD/CAM1 industry and has
now found strong interest from the Manufacturing Industry. While software
tools with their licenses had the �avor of easy to reproduce assets, that easily
can be applied to similar business models with tangible assets like machin-
ery, cars, electronic or other capital intensive goods that have been seen as
critical and di�cult to handle in service oriented business models. To en-
ter in similar business models in the manufacturing industries requires exact
knowledge about the behavior of the goods, equipment or the systems, their
usage conditions, early detection of upcoming failure modes or maintenance
requirements and dependencies with the delivered systems. Additionally it

1CAD/CAM are computer aided technologies, speci�cally Computer Aided Design and
Computer Aided Manufacturing.

21

22 CHAPTER 1. PROJECT OVERVIEW

requires a new way of engineering and design which is called �Functional
Engineering� and Design requires much higher e�orts in simulation and val-
idation of the goods prior to production to reduce the risk of failing once
such business models get applied. One very signi�cant change in the design
methodology established functional engineering due to the split of design
tasks and input parameters from each other used for the design and con-
struction activities. The use and applicability of the parameters that will be
taken for the design requires better knowledge about risk factors, criticalities,
boundary conditions and system behavior.

This deeper understanding of functional dependencies is combined with mea-
surement of actual data derived from test systems or out of predicted simula-
tion values which are taken to validate the design and operation behavior of
the systems and to optimize the used simulation and design models applying
the achieved results. To get representative and exact results either high vol-
umes of actual sensor measurement data or data from a high volume of similar
systems need to be reviewed and analyzed. One method which reduces time
and e�orts is based in a technology where data streams produced either by
life operating sensors and or derived from computation activities which have
produced extremely large data �les are validated during the streaming mode
to recognize immediately threshold violations, risk situations, uncontrolled
usage patterns which require immediate action and care and uncritical values
that can be excluded from further investigations.

A core objective of the Smart Vortex is to e�ectively use this data for sup-
porting collaboration and to improve the product lifecycle. Sustainable col-
laboration is a critical skill and competence in organizations. As systems
and products become more complex, experts and engineers need to collabo-
rate to manage integration and communication of the subsystems they design
and develop. Parallel to this, users, clients and stakeholders are becoming
increasingly often included in various phases of a product lifecycle, includ-
ing design, user feedback, innovation and improvement cycles. Collaboration
in the product's lifecycle can be supported by technology; e.g. information
systems for planning and controlling the production process as well as for
archiving, administrating and providing product related data. In complex
design and engineering phases, di�erent tools and techniques are useful at
di�erent points in the design. However, groups of engineers often do not have
the knowledge to choose or select e�ective tools and techniques for speci�c
situations. Furthermore, groups might not have the skills or the knowledge
to e�ectively use them in the appropriate way, in order to get relevant infor-
mation out of the data streams. Smart Vortex addresses those existing gaps
in the collaboration work and will provide intelligent support for the selection

23

and appropriation of collaboration support tools based on a group's current
interaction; it will also enhance each process phase and the availability and
accessibility of information.

In the domain of Smart Vortex, organizations are not isolated, but are mem-
bers of federations of partners in which data is shared and tasks are worked
into collaboratively across organizational borders. Nowadays, data exchange
between organizations is quite commonplace and explicit calls are used to
place orders, to inquire about business deals or to send other data which may
be important in a B2B2 scenario. However, on the technical side, these calls
are often isolated in nature and there is the lack of support for a full-blown
middleware solution. Smart Vortex has the vision of a cross-organizational
middleware, meaning, a framework which can automatically connect organi-
zations seamlessly, while it can still protect the intellectual property of the
partners and mind the di�erent company policies. Instead of proposing a
monoculture community, where every partner has to adopt central concepts,
every organization is free to use its own terms, de�nitions and structures
which will automatically be translated or mapped for the other partners, or
hidden if other members of the federation are not allowed to see the data.
Using this mechanism, Smart Vortex allows for a more �uid and agile user
experience in collaboration sessions, while it is still able to guarantee the
highest standards regarding data protection and privacy.

To improve the acceptance of application engineers that are not program-
ming specialists, easy access to the data which concern the design engineers
is required and need to be addressed to speed up the design and valida-
tion process. Support given by graphical access methods can solve these
de�cits and allow the engineers to concentrate on their mainstream activities
of design and validation. Smart Vortex addresses those existing gaps in the
current design methodology and will open the door to novel service oriented
business models reducing risk for the industries and minimizing the resource
consumption to make the European industries more competitive.

2Business-to-Business, commerce transactions between businesses.

24 CHAPTER 1. PROJECT OVERVIEW

Chapter 2

Main concepts

2.1 Meta-data

Meta-data, often referred to as �data about data� can be de�ned as �...struc-
tured information that describes, explains, locates, or otherwise makes it
easier to retrieve, use, or manage an information resource.� This can for
instance be information about the origin of the data (the data source), the
purpose of the data, the time and date of creation, etc.

2.2 Database Management System (DBMS)

A Database Management System (DBMS) is a system software for scalable
management of large data volumes usually stored on disk.

DBMSs can be categorized according to the DataBase model, which is a
type of data model that determines the logical structure of a DataBase, and
fundamentally determines in which manner data can be stored, organized,
and manipulated. The most popular example of a DataBase model is the
relational model. DBMSs also provide methods to maintain the integrity of
stored data, running security and users access, and recovering information if
the system fails.

DBMSs provide for languages and components to search and update DataBases,
as well as for storing meta-data called the DataBase schema about the stored
data.

25

26 CHAPTER 2. MAIN CONCEPTS

2.3 Query

A query is a request for the retrieval of some data from a DataBase. A query
is executed immediately to retrieve the desired information, for example:
�How many machines of type X located Y have installed sensors of type Z?�
This is called a passive query since the system processing the query passively
waits for users to send the queries for execution.

The execution result of a query through a DBMS returns a table of tuples
re�ecting current state of the DataBase tables.

2.4 Query Language

Queries are expressed in terms of some query language. For example, queries
to relational DataBases are usually expressed in the query language SQL,
while queries to RDF based information models are usually expressed in
SPARQL. Queries provide for users and programmers a very general way to
specify data selections (�lters), combinations (joins), and computations over
data stored in DataBases.

2.5 Data Stream

A data stream is a continuous �ow of tuples (events) of measurements from
some artefact. A data stream can be seen as an ever growing sequence of
tuples. A data stream can be live in case it is communicated directly from
its source without being stored on some media. At a given point in time a
user can save a snapshot of the current state of a stream on disk or some
other media.

2.6 Data StreamManagement System (DSMS)

A Data Stream Management System (DSMS) is similar to a DBMS with the
di�erence that while a DBMS allows searching only stored data, a DSMS in
addition provides query facilities to search directly in data streaming from
some source(s). therefore, the result of a DSMS query can be not only a set
of tuples as in SQL, but also a potentially in�nite stream of tuples.

The argument about using a dedicated DSMS, and not a traditional DBMS,
is that DBMSs are not able to e�ciently, or at all, handle large amounts of
streaming data and can be greatly outperformed by a DSMS [2].

2.7. CONTINUOUS QUERY (CQ) 27

Following �gure shows the main building blocks of a DSMS:

2.7 Continuous Query (CQ)

Queries that involve streams are called Continuous Queries (CQs).

DSMSs could execute a continuous query that is not only performed once,
but is permanently installed. therefore, the query run inde�nitely, or until
they are terminated, while conventional queries are executed on demand and
run until all requested data is delivered. The result of a CQ is a stream itself,
which is continuously updated as new data appears in the queried stream(s).

A conventional DataBase query executes once and returns a table of tuples.
Each row in a DataBase table is called a tuple. Analogously, an item in a
data stream is also called a tuple, but unlike a conventional DataBase query,
the result of a continuous query is a stream.

An example of CQ where some machines continuously deliver streams of tem-
perature readings may be: �Continuously show me the temperature readings
for sensor X on equipment of model Y operating at 20% higher temperature
than what is recommended.�

Data streams are often of such a high rate that saving them to disk is not
desirable or feasible. Furthermore, results of CQs have to be delivered as soon
as possible, putting requirements on the response time. In many cases, the

28 CHAPTER 2. MAIN CONCEPTS

applications require non-trivial analysis, leading to CQs involving expensive
processing. To provide scalability of such expensive CQs over high-volume
streams, the execution of the CQs must be parallelized.

When optimizing one-time queries, the query optimizer may use meta-data
and statistics on the tables. In the same fashion, a CQ optimizer may use
meta-data and statistics on the data streams. An executing CQ plan con-
tinuously reads input data streams and may access stored data (see �gure
above).

2.8 Continuous Query Language (CQL)

A Continuous Query Language (CQL) is a query language with speci�c op-
erators for Data Streams.

Di�erent CQLs have been proposed, like CQL from Stanford [3] or Stream-
SQL [4] to name a few; however, they all share the same operators. A com-
mon approach taken by several DSMS systems, in processing data streams,
is to form sliding windows upon the data stream [3].

The sliding window can be thought of as view upon a stream that, at any
point in time, re�ects the viewed part of the stream as a �nite relation.
As time �ows and new tuples arrive, the window moves over the stream
and the content of the relation is changed to re�ect the current view. This
continuously changing view is called a continuous relation, and by being
�nite it can be processed by relational operators. Continuous relations are
created by windowing operators; the most relevant ones are time, counting,
and partitioned windowing operators.

All windowing operators are common in that they specify a window size and
a window slide. For a time window size and slide are speci�ed in terms of
time units. The sliding window may contain any number of stream tuples as
long as the tuples' timestamps (all tuples have an associated timestamp) are
larger than the window starting timestamp, and smaller than or equal to its
ending timestamp (startingtimestamp+size). When the window is full, i.e.,
a new stream tuple has a timestamp larger than the window ending times-
tamp, the window increments its starting timestamp by slide. For a counting
window size and slide are speci�ed as numbers of tuples. That is, the max-
imum number of tuples that a counting window may contain is size. Once
full, the window drops slide of its oldest tuples. For a partitioned window
size and slide are also speci�ed as numbers of tuples, as in the counting win-
dow. Unlike counting window, a partition window will split the stream into
sub-streams such that each is uniquely identi�ed by one or several stream

2.8. CONTINUOUS QUERY LANGUAGE (CQL) 29

tuple attributes - much like the GROUP BY operator found in the relational
algebra. Each sub-stream will then be processed by a counting window using
the given size and slide. Finally, the resulting continuous relation is formed
by taking the union of all counting windows. The partitioned window oper-
ator is often used to construct continuous relations on which grouping and
aggregation can later be meaningfully applied.

30 CHAPTER 2. MAIN CONCEPTS

Chapter 3

Data Streams

Along a McKinsey report on �Big Data�, analyzing large data sets will be-
come a �key basis for competition, underpinning new waves of productivity
growth, innovation and surplus as long as the right policies and enablers
are in place�. McKinsey sees the power of �innovating new business models,
products and services� and �supporting of human decision making� in the
computation of �Big Data� [41].

A similar development can be seen regarding data streams. In industrial
applications high volume data streams are generated by simulations, sen-
sors or actuators etc. in for instance machining operations or collaboration
processes, which can interact with the previously mentioned data streams.

The goal of Smart Vortex is to provide a technological infrastructure con-
sisting of a comprehensive suite of interoperable tools, services and methods
for the intelligent management and the analysis of massive data streams
produced in all phases of the product and design life cycle, to achieve bet-
ter collaboration and decision making in large-scale collaborative projects
concerning industrial innovation engineering. Data streams will be used for
validation, behavior prediction, simulation and simulation model improve-
ment. This will be done during all the phases of the product life cycle, and
especially for the steady improvement of the o�ered services, combined with
product enhancements. These improvements are used to perform those ser-
vice o�ers and collaboration data to make design decisions traceable, and
also to improve the communication between the stakeholders.

Both data stored in repositories and produced in real-time as data streams
need to be processed. A particular kind of repository data is meta-data
describing properties about artifacts (machinery, collaborations, simulations,
etc.). Operational data from regular enterprise databases are used by Smart
Vortex for example for accessing customer, pricing, materials, or marketing

31

32 CHAPTER 3. DATA STREAMS

data. If desired and possible, streams can be saved in a repository as stored
streams by a program (e.g. a simulator) and replayed later.

Data streams can either be raw data streams produced by some artifact
or human, or derived data streams whose data is continuously computed
based other data streams in combination with product meta-data and data
stored in repositories. Derived streams can contain both continuous and
discrete values. An example of a continuous value is the power consumption
of some equipment in use estimated by a mathematical model over other
data streams and product meta-data. A discrete value can be, e.g., an action
event generated when non-expected behavior of equipment is inferred by a
validator.

As said, a central technology in the Smart Vortex project is the ability to
search and analyze high volume data streams in a distributed environment
by means of a DSMS. The searches and analyzes are speci�ed using CQs ex-
pressed in a query language. Other aims of CQs are, for instance, monitoring
of critical parameters of in-use products, monitoring how operators use the
equipment, and supporting collaborative interactions.

CQs over DSMS are di�erent from conventional DataBase queries written
in, for example, SQL, where a query requests data from tables stored in the
DataBase. The result of a DSMS query can be not only a set of tuples as
in SQL, but also a potentially in�nite stream of tuples (often called events).
Furthermore, stream queries are CQs in that they run inde�nitely, or until
they are terminated, while conventional queries are executed on demand and
run until all requested data is delivered. In the DSMS, values are computed
by procedures based on stored rule sets and stored metadata.

In Smart Vortex, the DSMS technology is built in as a federated system which
gives higher �exibility, scalability and enables parallel computing, while pro-
viding integration with systems that relay on DBMSs like PLM, ERP or other
relational oriented systems. Furthermore, DSMS functions can be installed
in a distributed environment.

The chosen federated DSMS for the Smart Vortex project is SCSQ, which
has the ability to perform expensive computations for decision support in
real-time over streams, and adopts SCSQL as CQ language.

3.1 SCSQ

Super Computer Stream Query processor (SCSQ) [5] [6] is a DSMS prototype
developed at Uppsala University where the CQs are speci�ed in a query
language called SCSQL (presented later) that includes types and operators

3.1. SCSQ 33

for sets, streams, and vectors. Vector processing operators enable queries
to contain numerical computations over the input data streams. Composite
types are allowed, which enables useful constructs such as vector of stream.
The system is extensible so that programmer can de�ne customized data
structures and query operators. Furthermore, the query language is extended
with Stream Processes (SPs) and parallelization functions, which allow the
user to specify customized parallelization and distribution of queries. Parallel
computations were de�ned as sets of parallel sub-queries, where each sub-
query executed on one SP.

SCSQ is implemented over Amos II (Active Mediator Object System) [7],
which is an extensible mediator DataBase system allowing di�erent kinds of
distributed data sources to be queried. This system is centered around an
object-relational and functional query language, AmosQL (presented later).
Amos II can store data in its main-memory object store. Furthermore, wrap-
pers can be de�ned for di�erent kinds of data sources and external storage
managers accessed to make them queryable. Several distributed Amos II
peers can collaborate in a federation.

SCSQ extends Amos II in the following ways [8]:

• Stream query coordinators start parallel processes dynamically.

• SPs provide mechanisms for iteration over streams in a distributed
environment.

• Primitives for network stream connections provide an infrastructure for
communicating SPs.

• Numerical vectors represented in binary form, and functions operating
over these vectors, provide e�cient processing of stream tuples.

• Post�lters extend stream processes by reducing and transforming their
output streams.

• Query language parallelization functions provide declarative paralleliza-
tion of CQs.

• Physical windowing functions provide network bound data stream rates
between stream processes.

• Performance tools allow pro�ling of parallelized query execution.

The superior continuous query processing rate of SCSQ is enabled by the
combination of two key technologies: parallelization of stream splitting in

34 CHAPTER 3. DATA STREAMS

conjunction with the use of physical windows. Parallelizing stream splitting
speeds up the distribution of data in a federated DSMS, whereas the use of
physical windows saves communication cost.

3.2 AmosQL

AmosQL [9] is an object-relational and functional query language.

Data, and information in general, is represented in AmosQL through types.
As in object-oriented programming, a type has attributes that describe the
type itself, and associated procedures known as methods. types can have
an inheritance relationship with other types; having de�ned a type, other
types can inherit attributes, methods and behavior from this type, called
base type, supertype, or parent type. The resulting types are known as
derived types, subtypes, or child types. The relationships of types through
inheritance gives rise to a hierarchy. Given a certain data representation
through types, instances of these types are called objects.

AmosQL is based on the function composition notion, and even types at-
tributes and methods are represented as functions themselves. AmosQL has
a set of prede�ned functions, but new ones can be de�ned through proper
statements. These functions can be then composed in order to ful�ll user
needs.

3.3 SCSQL

SCSQL extends AmosQL with stream and parallelization primitives. In sum-
mary, SCSQL is an extensible query language for both stored and streamed
data. SCSQL allows continuous and ad hoc queries over these data sources
to produce derived streams. The foreign function interface of SCSQ allows
any external data and processing to be plugged into SCSQ. Finally, the
parallelization functions of SCSQL allow stream processing to be massively
parallelized.

All data in SCSQ is represented by objects in SCSQL. The relation between
Streams, Stream Processes and Objects in SCSQL is illustrated in the fol-
lowing �gure:

3.3. SCSQL 35

A stream is an object that represents (possibly unbounded) sequences of any
kind of objects, a bag represents relations, and a vector represents bounded
sequences of objects (for example, vectors are used to represent stream win-
dows, and vectors of streams are used to represent ordered collections of
streams). The result of a continuous subquery is a stream. Continuous sub-
queries are assigned to SPs. Users of SCSQL de�ne parallel and distributed
stream computations by assigning continuous subqueries to SPs.

An important property of SQSQL is that it is extensible so that programmers
easily can de�ne own foreign functions in some conventional programming
language such as C or Java. For example, new kinds of stream event formats
produced by particular kinds of communication protocols can be accessed
through foreign functions and used in continuous queries. Data �ltering or
mining algorithms can be de�ned as foreign functions and used in queries.

Another central feature of SCSQL is the facilities to de�ne distributed and
massively parallel queries. The query language includes stream processes
(SPs) and parallelization functions, which allow the user to specify cus-
tomized parallelization and distribution of queries. This is enabled by high-
level primitives for scalable stream splitting and for specifying distributed
and parallel computations [5] [10].

36 CHAPTER 3. DATA STREAMS

Chapter 4

Requirements

One of the goals of this framework is to facilitate the use of data to be pro-
cessed by an analyst to ease the decision-making process. As the collabora-
tion data streams contain high amounts of information (coming from the raw
data) it would be very complex for a human analyst to process all of the raw
data without any �ltering mechanism that can transform the high amounts
of data into processed information, reducing its volume. The transformation
and aggregation of raw data into more useful information is automatically
performed, as explained, by the DSMS, applying proper functions and �lters
to reduce its volume. For example, the system is able to calculate from the
data streams the fuel's lifecycle usage of an excavator not just its statistics
for hours or days.

At an higher abstraction level, however, users have to take decisions and
perform tasks based on analyzed data. This can be achieved through the
support of a graphical interface, and appropriate tools, which aid the user to
reach her goal.

Industrial partners have provided, during a �rst analysis phase, a description
of their requirements, taken as a starting point for the creation of di�erent
use cases. These use cases have been taken into consideration during the user
interface requirements gathering phase.

4.1 User interface requirements

The user interface of the system should provide the end-users the resources to
collaborate on, consume and reason about the raw and derived data streams
as well as to manipulate and create new data stream computation instances.
Using graphical and multi-modal query languages, the complexities of the

37

38 CHAPTER 4. REQUIREMENTS

underlying, textual query language are hidden from the end-users for a more
intuitive access to the information contained within the data streams (�g-
ure 4.1).

Figure 4.1: Multimodal Interaction with Data Streams.

To achieve these goals, several requirements are identi�ed and categorized
according to di�erent parts of the Smart Vortex project. Looking at the
Smart Vortex Framework architecture (�gure 4.2), the subproject of interest
is the one related to the graphical user interface, for the query writing process
and the subsequent query results consumption: the Visual and Multimodal
Query and Data Presentation macro-component.

The interaction conceptualizations are to be integrated into a collaboration
tool, for multiple end-users with their roles, to reason about the information
and coordinate and agree upon and take actions. Furthermore, part of the
user interface will use appropriate modalities to proactively notify end-users
about noteworthy occurrences regarding the system's state with respect to
the users' observable activities. The collaborative visual environment should
enable two di�erent types of interactions: provide support to synchronous
collaboration between co-located users and asynchronous distributed collab-
oration between remote users. To support these tasks and enable collabo-
ration among di�erent workers, the user interface has to identify and pro-
vide accessible, �exible and editable artifacts for both individual-based and
group-based exploration of data streams. This requires the de�nition of a
group interaction space for collaborative data analysis, where users can in-
teractively access data streams, as well as create, layout, arrange and share

4.1. USER INTERFACE REQUIREMENTS 39

Figure 4.2: Smart Vortex Framework architecture.

artifacts connected with data streams. Each artifact should be enriched with
contextual information (such as labels, scales, legends, etc.) that allows users
to correctly interpret the information being displayed. Users collaborating
in a shared group interaction space should be able to jointly interact with a
single shared view of data streams, or to create di�erent views of the same
data streams in a personalized workspace that can optionally be shared with
other participants and mapped to, or merged with, other views. By enabling
the sharing and coordination of multiple views of data streams in a common
workspace, the visual environment allows users with di�erent backgrounds
and experience to reason on complementary data stream representations.

Additional requirements, particularly targeted to asynchronous distributed
collaboration, include the ability to:

• allow users to trigger conversations and remote social interactions via
the provided collaboration tools;

• use noti�cations of actions performed by other users (edited views,
updates in artifacts, requests or comments issued by other users, etc.);

40 CHAPTER 4. REQUIREMENTS

• use metaphors to represent the timing of performed actions and to
access and display the actions' history for the artifacts;

• provide representations of user pro�les, including their roles, back-
grounds and skills (as provided by social networks).

Moreover, the interface should provide users having di�erent skills, roles and
capabilities with the possibility to explore and analyze complex data streams
with little or no assistance from technical practitioners. To e�ectively sup-
port inexperienced or non-technical users, display and interaction techniques
should partially or totally automate the selection of metaphors and inter-
action modalities, in order to constrain the con�guration parameters that
users have to de�ne. On the other side, experienced users and technical peo-
ple should be able to �ne tune the appearance and behavior of their displays
via the user interface.

As collaboration practices often include mobility and remote interaction, the
user interface layer should also provide representations and interaction mod-
els for pervasive computing scenarios, where multiple devices with di�erent
capabilities (e.g., in terms display size, screen resolution, available devices
and computational resources) and demanding little or no technical knowl-
edge (e.g., PDAs and tablet computers).

Apart from all technical features mentioned above, the user interface should
support also the main marketing related user criteria such as:

• easy to learn with as much as possible intuitive handling elements;

• fast reaction capabilities to risk situations;

• easy adaptability if extensions are required.

More speci�cally, the graphical user interface o�ers to the end user two main
features: the creation of data processing instances as queries over the DSMS,
and the consumption of the information delivered by these queries.

Hiding the complexity of the textual query language potentially limits the
expressiveness for queries to be expressed. The available semantic subset of
the textual query language is a function of the employed modality. To select
meaningful subsets requires the identi�cation of suitable trade-o�s between
expressiveness and ease of use for the di�erent modalities and user's expertise.

Similar considerations apply to the consumption of the information from the
expressed queries. The di�erent modalities and employed interaction tech-
niques determine the dimensionality and frequency of information from the

4.2. USE CASES 41

DSMS to be perceived and processed by the user with acceptable cognitive
load.

The visual and multi-modal query language should support the access to
data streams (and related metadata) for both local and remote users in
various formats. It should allow users to de�ne queries over data streams,
parametrize them and create and position resulting views in the personal or
shared workspace. Query building and con�guration should be based on con-
ceptualizations with a formal syntax and semantics to be matched with the
syntax and semantics of the underlying textual query language. The query
building environment has to provide visual and multi-modal tools that al-
low unskilled end-users to perform data stream queries, navigate the results
and retrieve other hidden relevant information. Graphical and multi-modal
primitives, as well as basic visual and multi-modal queries, should be made
available via a user query library extendable by the user by adding and stor-
ing composed queries. The environment should enable multiple combinations
and compositions of conceptualizations to re�ect advanced query constructs
and allow users to aggregate/disaggregate, �lter and browse data in order to
focus on relevant information. Depending on the textual query language ca-
pabilities, visual and multi-modal query formulation tools should allow both
intensional and extensional queries operating on the data stream model or
their representation.

Despite the requirements for the user interface refer to a collabo-
rative environement, the objectives for year 2 of the project (the
one this work refers to) are for software components available in
�single-use mode�, i.e., with no collaboration/sharing features. For
this reason, all references to the collaborative environment have not been
taken into consideration, except for those ones presented in the meta use
case (presented in the next section).

Furthermore, only a web-based environements is targeted, and a
web application is to be designed.

4.2 Use cases

The Smart Vortex project handles some aspects of data stream management
in industrial environments within three integrated sub-projects (ISP-1/2/3),
based on the industrial partners' visions of the innovative Functional Product
business model.

For each sub-project, some general use cases, envisioning possible working
scenarios, have been proposed. The selected use-cases provide a high inno-

42 CHAPTER 4. REQUIREMENTS

vation potential in the areas of the following main topics:

• Processing of (i.e. search in, analysis of , and computation on):

� Large data streams generated by sensors in equipment, simula-
tions, collaboration activities (cross organizational, cross team,
and cross domain) etc.

� Inferred data streams, i.e. resulting from processing other data
streams.

� Non-streaming data sets generated in product development or
product life-cycle management.

• Visualization of the computational results like trend, risk and threshold
validation in a new graphic interface also supporting querying data
streams.

In order to identify the users' needs and the related functionalities, a meta
use case upon the existing ISPs is created. This �ctive use case describes a
hypothetical work session; it also helps to �gure out how users interact with
the system and in which role. There can be di�erent kinds of users and they
may need di�erent functionalities. The system analysis is then applied to
the three ISPs and their respective use cases.

Only a brief description of the use cases is given. A deep insight in the use
cases can be found in [42].

4.2.1 ISP-1: Data streaming computation from stored

data

Use-case 1: Data streams derived from complex simulations (Use
case provided by Fe-Design GmbH)

In this use case, frequency oriented trend calculation are done about com-
plex stress, vibration or sound simulations. Possible examples of actions
possible through the visualization functionalities: prediction calculation out
of trend analysis on relation to expected overshoot of given thresholds in
stress, sound or vibration, stop of current simulation run; adaptive visual-
ization of prediction and restart of the simulation with new parameters if
overshoot is predicted, etc.

4.2. USE CASES 43

Use-case 2: Data stream computation of data streams that have
previously been stored in �le sets (Use-case provided by Hägglunds
Drives and Volvo CE)

Due to missing communication infrastructure or expensive connections, it can
happen that both Hägglunds Drives and Volvo CE store the data in either
large �le repositories or dump them from random access memories [42][43].

In this scenario the main di�erence with the other ones is that the data are
not transferred in real time, although the functionalities needed for the data
analysis have no di�erences with the use cases presented in ISP-2.

4.2.2 ISP-2: Computation of real-time data streams

Use-case 1: Real-time data streaming and computation from actual
sensor data in hydraulic systems (Use case provided by Hägglunds
Drives)

Hägglunds needs to monitor their systems to learn about system performance
and avoid unplanned stops. Data streams from sensors have to be analyzed
in combination with derived data. Data streams will be initially stored at
a service provider, and then the data will be delivered to the data stream
management system. The result of the analysis process is a cockpit chart
which allows for an overview of many machines' behavior in a limited space.
A list of functionalities and rationale is provided. Especially about the vi-
sualization features and the visual query editor, some functionalities will be
added or modi�ed when the selected query language and a set of query is
available.

Use-case 2: Real-time data streaming and computation from actual
sensor at milling tools (Use case provided by Sandvik Coromant)

At this stage we refer to the functionalities needed in the use case 1. The
kind of data is the same and a list of query is not yet available; in this use-
case we assume to implement all the functionalities identi�ed in the use case
1.

44 CHAPTER 4. REQUIREMENTS

Use-case 3: Real-time data streaming and computation from ac-
tual sensor in construction equipment (Use case provided by Volvo
Construction Equipment)

At this stage we refer to the functionalities needed in the use case 1. The
kind of data is the same and a list of query is not yet available; in this use-
case we assume to implement all the functionalities identi�ed in the use case
1.

4.2.3 ISP-3: Data streams within collaborative environ-

ments

In this �ctive use case, Sandvik, Hägglunds and Volvo CE would work in a
collaborative environment to design and develop functional products. Follow-
ing, a list of capabilities that will be implemented to allow users to cooperate
in a collaborative session, while the visualization and query tools functional-
ities are the same as in the other ISP.

4.2.4 Meta Use Case

An �administrator� needs to set up the system, before engineers can start
to work. The administrator can manage both users and analysis tools and
creates users' rights and permissions to access di�erent parts of the system
as well as data sources. The administrator also manages the collaborative
environment and the related issues, e.g., who can create new collaborative
sessions, who can participate, who is able to share or edit documents, etc.
The administrator can also create an initial set of queries (or query templates)
through a visual query editor and store them in a query repository.

The visual query editor provides many graphical icons representing di�erent
kinds of operators, divided in palettes according to their operator category
such as spatial, logical, mathematical or comparison. Once the system is
con�gured, the engineers can access it using their user credentials. The end
users (referred to as engineers in the following, but they could as well be
consultants, etc.) can start their work session, load a query stored in the
query repository, modify it, or write a new query through the visual query
editor. Engineers have the possibility to visualize the results of queries in
several ways since several visualization modalities are provided, e.g., canon-
ical charts (bar chart, histogram, line chart) or combinations of those (cock-
pit chart), and advanced features like zoom to a speci�c data source. This

4.2. USE CASES 45

process can be repeated to further investigation, modifying for example the
numeric values of the query.

Engineers can also start or join a collaborative work session, depending on
their permission. In a collaboration environment it is possible to cooperate
in several ways, such as sharing the desktop, sharing or editing a document,
creating or joining a conference call, and all the other available modalities of
interaction. The improvements made in a collaborative session can be stored
for analysis of further individual contribution and work progress.

Figure 4.3: Meta use case and roles in the Smart Vortex system.

Starting from this meta use case, the User Layer functionalities can be an-
alyzed and identi�ed. These functionalities, presented below, are taken as
a design model for the prototype developed during year 2 of the project.
Notice, like already mentioned, that collaboration functionalities, even if de-
scribed in this meta use case, are not taken into consideration during this
research and design phase.

46 CHAPTER 4. REQUIREMENTS

PCA-3 Visualization Functionalities (PCA-3_VF)

PCA-3_VF01 Line Chart Visualization

Rationale The interface shall provide a line chart visualization to
show, for example, the system behavior over the time.

PCA-3_VF02 Histogram Visualization

Rationale The interface shall provide a histogram visualization to
show the distribution of continuous data.

PCA-3_VF03 Bar Chart Visualization

Rationale The interface shall provide a histogram visualization to
show the distribution of discrete data.

PCA-3_VF04 Graphical Data Source Representation

Rationale The interface shall provide an intuitive graphical way
to represent the data sources in the query formation

process. E.g., a graphical representation of the sentence
�all the sensor X on the machine Y in the country Z�

PCA-3_VF05 Zoom Visualization

Rationale Users shall be able to zoom in on a desired part of the
visualized data (e.g., once showed the n machines as
result of a query, it shall be possible to zoom and
visualize the overall status of that machine).

PCA-3_VF06 Cockpit Chart

Rationale The interface shall provide a cockpit chart as result of
the data stream analysis process. Through the cockpit
chart it is possible to have an overview of the system,
monitor many machine/sensors and many historical

trends at the same time combining many visualization
modalities.

PCA-3 Query Functionalities (PCA-3_QF)

PCA-3_QF01 SPARQL Visual Query Language

Rationale The interface shall provide a SPARQL Visual Query
Language to query the RDF model.

PCA-3_QF02 SCSQL Visual Query Language

Rationale The interface shall provide a SCSQL Visual Query
Language to pose queries to the DSMS.

4.2. USE CASES 47

PCA-3_QF03 Query Repository

Rationale The interface shall allow users to easily load queries
saved in the repository, providing also an intuitive

visualization to identify the desired query.

PCA-3_QF04 Visual Query Editor

Rationale The interface shall provide a Visual Query Editor
where users can write new visual queries and also

modify a query stored in the repository.

PCA-3_QF05 Visual Spatial Query Operators

Rationale The interface shall provide Visual Spatial Operators to
express spatial constraints on the data sources.

PCA-3_QF06 Visual Time Query Operators

Rationale The interface shall provide Visual Time Operators to
express time constraints on the data sources.

PCA-3_QF07 Visual Logical Query Operators

Rationale The interface shall provide Visual Logical Operators to
express logical constraints on the data sources and

spatial and temporal query operators.

PCA-3_QF08 Visual Arithmetic Query Operators

Rationale The interface shall provide Visual Arithmetic
Operators to express arithmetic and statistical

constraints on the data sources.

PCA-3_QF09 Visual Comparison Query Operators

Rationale The interface shall provide Visual Comparison
Operators to express comparison constraints on the

data sources.

PCA-3 Administrator Functionalities (PCA-3_AF)

PCA-3_AF01 Create user

Rationale The administrator shall be able to create new users.

PCA-3_AF02 Manage user

Rationale The administrator shall be able to modify rights and
permission of each user.

PCA-3_AF03 Write new visual query

Rationale The administrator shall be able to write a new visual
query and store it in the query repository.

48 CHAPTER 4. REQUIREMENTS

Part IV

State of the Art

49

Chapter 5

Visual Query Systems

A Visual Query System (VQS) can be de�ned as a system that uses a visual
representation for both the domain of interest and the related requests on it.
The �rst graphical query language was introduced in the mid-1970s with the
name of Query By Example (QBE). A wide range of implementations were
built using the QBE concepts and there are several tools using this paradigm
today. Two forms of query creation (SQL and QBE) were compared through
an experiment [11].

The authors found that the time requested for query formulation apply-
ing QBE-based approach was shorter than the time requested using a SQL
approach; the participants were also more comfortable during the creation
process while adopting the QBE paradigm instead of the traditional SQL
language. Interestingly, there were no remarkable di�erences regarding the
accurateness of the queries between the two approaches. Even considering
some limitation of the experiment (e.g., the choice of the participants can
be questionable, QBE does not cover all the possible visual approaches and
visual query languages properties), it is quite clear there are some advantages
using a visual approach while writing queries.

A general overview and classi�cation of VQSs can be found in Catarci et al.
[12].

According to the visual representation adopted for the DataBase and the
queries, VQSs are categorized into Form-based, Diagram-based, Icon-based
or a combination of them. A Form is a generalization of a table, and it
is possible to represent relationships among cells, subset or the overall set,
allowing a three level answer. There are VQSs in which it is possible to
manipulate both the intensional and extensional part of the DataBase, fo-
cusing on di�erent parts of the DataBase. Diagrams are frequently adopted
in VQSs, and they generally use some visual components (shapes, colours,

51

52 CHAPTER 5. VISUAL QUERY SYSTEMS

arrows) that are univocally mapped into a concept. In an Icon-based sys-
tem, there is a mapping between a real concept or analogy and an icon that
hides the schema of the data. It is possible to query the DataBase combining
icons according to spatial concepts. The main issue while designing an iconic
system is to de�ne a non-ambiguous mapping; di�erent attempts are made
to �nd a common mapping, but there still are not any universal standards.
Another possible categorization is made by considering the strategies to un-
derstand the reality of interest. The �ltering of the information of interest
can be accomplished using a top-down strategy. The implementation can be
made in several ways: iterative re�nement, selective or hierarchical zoom,
or user-system dialogue. A di�erent approach is browsing, which enables
getting more knowledge by exploring the neighbourhood concepts. Browsing
can be specialized in extensional, intensional or mixed browsing. An alter-
native approach is schema simpli�cation, which "brings the schema close to
the query". This can be done by transformations of concepts of the original
schema in a user view, which can not be extracted by the original schema.
Transformations are made to produce a better query representation. The
Visual Query Languages are also classi�ed according to the query formula-
tion strategy. In a schema navigation strategy the user starts from a concept
and can reach the other concepts of interest. There can be di�erent paths
to navigate the schema. The �rst possibility is to use an arbitrary path to
explore the schema, reach the concepts of interest and apply condition on
them. It is also possible to select one concept from the DataBase and then
navigate the schema by a hierarchical view build using the chosen concept
as a root. Moreover, users can choose the start concept and then build their
own relationships. A second possible strategy in the query formulation pro-
cess is by using sub-queries. This can be done following two approaches: by
composition of concepts, usually in iconic based languages in which several
icon are combined to write the �nal query, or using stored queries previously
created or stored in a system library. Another strategy for query formulation
is by matching, which can be done by example or by pattern. In a matching
by example strategy, users can provide an example of a query and the sys-
tem generalizes the example and builds the query. Using a pattern matching
strategy, the system searches in the DataBase for a pattern speci�ed by the
user. The last strategy for query formulation is by range selection, where it
is possible to specify a range on di�erent data-set through graphical widgets.

5.1. QUERY BY DIAGRAM 53

5.1 Query By Diagram

5.1.1 QBD*

An example of diagram-based Visual Query Language is QBD*[13].

This system is an Entity-Relationship (E-R) Oriented Data Model, which
provides a relationally complete query language. The graphical interface,
which is the same for both schema speci�cation and query formulation, relies
on a language that allows also recursive queries. The main architecture is
composed by three main modules: the Graphic Interface, the Translator and
the DBMS Interface. Users can interact with the graphical interface in four
di�erent ways. In the �E-R schema library� there are the schematas of the
applications, and in the �E-R schema user library� there are the user views
of the schemata stored in the schema library. For each schema in the schema
library, there is also a set of schematas at a higher abstraction level stored
in the �E-R top-down schema library�. Users can store graphical queries in
the �user query library� and reuse them when needed. In the second main
module, there is a translation from graphical queries into relational algebra,
or into suitable programs if the original query is a recursive query. Follow-
ing, the DBMS Interface translates the relational algebra into a query in
the underlying DataBase language. In QBD*, the query formulation process
has di�erent interchangeable steps. Firstly, a user can explore the concep-
tual schema by a top-down browsing mechanism. Secondly, using graphical
primitives called location primitives it is possible to focus on the subschema
of interest. This can be done by direct extraction, expressing query on the
schema or using the schemata stored in the library. Further, it is possible to
manipulate the schema by graphically replacing primitives bringing it �close
to the query�. After this transformation, the schema can result in a di�erent
schema, which is non-isomorphic to the original schema. Subsequently, the
query is completed by graphical operations such as navigation or selection
upon the DataBase schema. In QBD* it is only possible to de�ne queries on
the DataBase schema, that means de�ning on the intensional level.

5.1.2 MURAL

A similar approach to QBE can be found in the Visual Query Language
MURAL[14],

which is intended for multiple data sources integrating di�erent types of data.
The main objects are entities and relationships. The entities are all di�erent
data sources, and the relationships represent ways of correlating data sources.

54 CHAPTER 5. VISUAL QUERY SYSTEMS

Figure 5.1: QBD* schema representation.

An entity can represent a tuple from a relational DataBase, an object from
an object DataBase or a C++ or a Java object. Each entity has several �elds
de�ned over a set of domains like primitive type of data (strings, integers)
or references to other entities. A relationship can be a simple way to relate
entities in one set with those in one other or a more complex relationship.
MURAL introduces several concepts in order to facilitate the creation of
complex queries: the notion of combination of both entities and relationships
to express: �AND� �OR� conditions, restrictions and �elds. It is also possible
to save a query for a sub-model, so that users can instantiate such sub-models
as needed for building new complex queries. The expressive power of MURAL
is at least the same of the relational algebra or calculus.

5.2 Query By Icon

5.2.1 QBB

A framework developed following the paradigm Query By Browsing (QBB),
which allows both intensional and extensional queries, is described in the
work by Polyviou et al. [15].

This framework adopts the same metaphor as most current operating sys-
tems, i.e. the desktop paradigm and the related concepts like folders, docu-
ments and applications. These objects are displayed in a tree mode, starting

5.2. QUERY BY ICON 55

Figure 5.2: QBD* interaction.

from a root folder with subfolders. In QBB, both the schema and query are
represented by a folder hierarchy. The concept of a folder is highly related
to the table of a DataBase, and the subfolders are all the folders related to
the parent folder. Documents and applications are views on the data. Doc-
uments are used to display the data whereas the manipulation of the data,
such as insert or delete, is performed by the applications. By �ltering, a
special kind of application, it is possible to restrict the record in the parent
folder. There are �lter templates which are highly related to the SQL pred-
icates, but it is also possible to build custom �lter for other data types. In
QBB the distinction between the DataBase navigation and the query formu-
lation is represented by the activation of a folder; by an implicit or explicit
activation it must be clear whether the folder is involved in a query or if it
is only being browsed.

5.2.2 QBI

QBI [16] is a pure iconic Visual Query Language, which provides tools for
an intensional browsing of DataBases. A user can formulate queries without
knowing the underlying structure of the DataBase and the path speci�cation,
plus a single icon hides the path expression that is automatically generated
by QBI. The external view is made up with only two concepts, that is to
say a class of objects and attributes of a class. The entire DataBase is

56 CHAPTER 5. VISUAL QUERY SYSTEMS

Figure 5.3: MURAL overview.

expressed by a set of classes with several properties called Generalised At-
tributes (GA). GA represents a generic property of one or more classes and
can encapsulate both implicit and explicit relationships. Both classes and
GAs are represented by icons. In order to avoid disambiguation, a natural
language descriptions generated by the system is added to the icon visual-
ization. The schema of the DataBase is made according to a semantic data
model called Graph Model. The schema consists of a labelled graph that
captures both structural information, such as classes, relationships, and con-
sistency constraints. The classes of objects, which are nodes in the semantic
model, are connected through paths. This concept is related to the GAs but
not all the paths are equally meaningful; therefore the QBI system de�nes a
semantic distance function to estimate the meaningfulness of a path. This is
done only in order to present to the user a restricted number of useful GAs,
that otherwise would be shown in an in�nite number. The query process
formation follows the select-project paradigm. The user �rst de�nes the con-
ditions that determine a subset of class and then specify the GAs that will
be part of the output result.

5.2.3 The Flow Metaphor

Morris et al. [17] designed a Visual Query Language for spatial DataBases.
Such DataBases focus on representing and formulating queries about data
related to objects located in the space. The proposal is valid for both spatial
and non-spatial DataBases, and all the operations are expressed consistently.
Some insights can be found in this implementation, where the most important
is the metaphor used to de�ne the query. Queries are visualized by a �ow
of information from the data source to the result. In between, there is a

5.2. QUERY BY ICON 57

Figure 5.4: QBB query example.

�lter process where constraints can be applied. The �ow starts with an icon
representing an object. A simple �lter expressing constraints can be applied
and the �ow will pass through the �lters only as long as the constraints
set are satis�ed. Boolean conditions can be created combining �lters. The
AND condition is represented by two �lters in a series, whereas two �lters in
parallel represent the OR condition. If a �lter has a double border it means
a join condition, and these kinds of icons are associated with more than one
object type. Combining these basic constructs makes it possible to build
complex queries.

58 CHAPTER 5. VISUAL QUERY SYSTEMS

Figure 5.5: A visual query in the �ow metaphor.

5.2.4 Kaleidoquery

The �ow metaphor is also the basic idea for the Kaleidoquery [18], which is
a visual query language for object DataBases. As Morris states in his work
[19], class instances and their extents enter the query; in the �owing process
there are one or more �ltering steps in which some constraints are applied
on the attributes of the classes. The results of the query can be visualized or
further used as inputs to start a new querying �ow. Classes and extents are
represented by a combination of icons and text descriptions to give a better
understanding than a pure iconic or pure textual visualization [20].

As a user becomes more familiar with the system, the user will rapidly asso-
ciate the icon with the text without fully reading it in order to understand
the meaning of the query. The extents visualization consists of the extent
name surrounded by an oval box. Kaleidoquery provides di�erent icons to
describe boolean operators, which can be easily combined using parallel or
serial connections as seen in Morris' work. It is possible to express basic con-
straints, such as: �equal�, �greater than�, and �less than� operators, adding
them in the �ow and restrict the result. In �gure 5.6, the iconic visualization
of the operators can be easily identi�ed. Two extents involved in a join are
identi�ed with an equal condition applied on the join's attributes; aggrega-
tion operators, such as sum, maximum, average, are visualized by an oval

5.2. QUERY BY ICON 59

surrounding the extents; the membership test and the universal and exis-
tential quanti�cation are displayed with an oval arrow surrounding a textual
description. Kaleidoquery relies on OQL, an object query language used to
work with query DataBases. One limitation of this language is that while
writing the query, the user must concentrate also on the desired structure of
the result. To facilitate the structuring process, the system allows the user
to apply all the visualization conditions directly on the query results. This
means that, starting from the �nal extent of the �ow, it is possible to apply
grouping, order by, or other conditions before visualizing the desired output.

Figure 5.6: A query example in Kaleidoquery.

5.2.5 Visual

Another example of an icon-based object-oriented query language is VISUAL
[21], which is a system addressing scienti�c DataBases. The system design is
aimed for large volumes of data with real time constraints and spatial prop-

60 CHAPTER 5. VISUAL QUERY SYSTEMS

erties. The query part is implemented as an object and, while processing
the results can be communicated in between di�erent query objects. Secu-
rity, synchronization and time-constraints issues are better managed in this
object-oriented approach. In VISUAL, there is a client-server approach for
the query object model, where a query object acts as a client when request-
ing services from another query object, which becomes a server. Every query
object is described using interpretation semantics, while there can be di�er-
ent execution semantics: in this way objects can communicate through the
interpretation semantics and can be executed in di�erent frameworks. The
query is represented by a window, divided in query head and query body.
In the head there is a name of the query, input and output parameters, and
an output speci�cation. VISUAL is strongly typed, and each output pa-
rameter must be speci�ed as a single object or a collection of objects. The
body contains several iconized objects, condition boxes and links to other
queries. Every iconized object has some properties, such as color or shape,
that clearly identify it. There can be four classes of iconized objects: domain
objects, method objects, range objects and spatial enforcement region ob-
jects. VISUAL focuses on spatial and hierarchical concepts, in which objects
can intersect each other or can be contained in to another object specifying
the relationships among them. The object oriented architecture allows an
easy change of the domain of interest: the domain is the lowest layer of the
system architecture. Thus, it is possible to build a new application writing
only the lowest layer of the architecture.

5.3 Visual Query Comparison

A Visual Query Language (VQL) should provide di�erent kinds of interaction
because there is not a unique paradigm that leads to the best results. An em-
pirical experiment [22] about the ease of use of two di�erent query languages
shows that there can be some advantages as well as disadvantages, both in
iconic and diagram-based approaches. In the experiment comparing QBI and
QBD systems, di�erent strategies are used for the query formulation (navi-
gation vs. composition) as well as a di�erent visual formalisms (diagrams vs.
icons), which are basic aspects of VQL. Thus, the results can be extended
to larger classes of the VQL system. The experiment focuses on discovering
which relation occurs between the query language type and both the query
class and the experience of the user. In particular, the queries are classi�ed
according to the semantic distance of the path involved in the query and the
overall number of the cycles in the query The notion of path derives from
the Graph Model described in QBI. The main result is that both accuracy

5.3. VISUAL QUERY COMPARISON 61

Figure 5.7: A visual query in VISUAL.

and response time seem to be highly sensitive to the semantic distance of the
query path, while QBD shows independence for both criteria. In addition,
QBD is less accurate and requires more time when there are cycles in the
query. Furthermore, QBI seems not to be a�ected by the presence of cycles.

62 CHAPTER 5. VISUAL QUERY SYSTEMS

Chapter 6

Visual Analysis

The increasing scale and availability of digital data provides an extraordinary
resource for scienti�c discovery, business strategy, and even our personal lives.
To get the most out of such data, however, users must be able to make sense
of it, to answer questions, uncover patterns of interest, and identify (and
potentially correct) errors. Beside data-management systems and statistical
algorithms, analysis requires contextualized human judgments regarding the
domain-speci�c signi�cance of the clusters, trends, and deviations discovered
in data.

Visualization provides a powerful means of making sense of data. By map-
ping data attributes to visual properties such as position, size, shape, and
color, visualization designers boost perceptual skills to help users discern and
interpret patterns within data [23]. A single image, however, typically pro-
vides answers to, at best, a handful of questions. Instead, visual analysis
typically progresses in an iterative process of view creation, exploration, and
re�nement. Meaningful analysis consists of repeated explorations as users
develop insights about signi�cant relationships, domain-speci�c contextual
in�uences, and causal patterns.

Visual analysis can be divided into task types, grouped into three categories:

• data and view speci�cation (visualize, �lter, sort, and derive),

• view manipulation (select, navigate, coordinate, and organize),

• analysis process and provenance (record, annotate, share, and guide).

63

64 CHAPTER 6. VISUAL ANALYSIS

6.1 Data and View Speci�cation

To enable users to explore large data sets involving di�erent data types (e.g.,
multivariate, geospatial, textual, temporal, networked), �exible visual analy-
sis tools must provide appropriate controls for specifying the data and views
of interest. These controls enable users to selectively visualize the data, to
�lter out unrelated information to focus on relevant items, and to sort in-
formation to expose patterns. Users also need to derive new data from the
input data, such as normalized values, statistical summaries, and aggregates.

6.1.1 Visualize

Perhaps the most fundamental operation in visual analysis is to specify a
visualization of data: users must indicate which data is to be shown and how
it should be depicted. A common data visualization method is represented
by the chart, where users can select the type (bar charts, scatter plots, map
views, etc.), assign data variables to X/Y/Z axes and choose size or color of
visualized marks.

Figure 6.1: Chart example, with X/Y axis and bars and line representations
overlapped.

6.1.2 Filter

Filtering of data values is intrinsic to the visualization process, as users rarely
visualize the entirety of a data set at once. Instead, they construct a variety
of visualizations for selected data dimensions. Given an overview of selected
dimensions, users then often want to shift their focus among di�erent data
subsets, for example to examine di�erent time slices or isolate speci�c cate-
gories of values.

6.2. VIEW MANIPULATION 65

6.1.3 Sort

Ordering (or sorting) is another fundamental operation within a visualization.
A proper ordering can e�ectively surface trends and clusters of values [24]
or organize the data according to a familiar unit of analysis (days of the
week, �nancial quarters, etc.). The most common method of ordering is
to sort records according to the value of one or more variables. Sometimes
specialized sort orders (such as weekday or month names) are necessary to
reveal important patterns.

6.1.4 Derive

As an analysis proceeds in iterative cycles, users may �nd that the input
data is insu�cient: variables may need to be transformed or new attributes
derived from existing values. Common cases include normalization or log
transforms to enable more e�ective value comparisons. Derived measures
are often used to summarize the input data, ranging from descriptive statis-
tics (mean, median, variance) to model �tting (regression curves) and data
transformation (group-by aggregation such as counts or summations).

6.2 View Manipulation

Once users have created a visualization through data and view speci�cation
actions, they should be able to manipulate the view to highlight patterns,
investigate hypotheses, and drill down for more details. Users must be able
to select items or data regions to highlight, �lter, or operate on them. Large
information spaces may require users to scroll, pan, zoom, and otherwise nav-
igate the view to examine both high-level patterns and �ne-grained details.
Multiple, linked visualizations often provide clearer insights into multidimen-
sional data than do isolated views. Analysis tools must be able to coordinate
multiple views so that selection and �ltering operations apply to all displays
at once and organize the resulting dashboards and work spaces.

6.2.1 Select

In visual analysis, reference (or selection) is realized through a limited set
of actions, such as clicking or lassoing items of interest. Common forms
of selection within visualizations include mouse hover, mouse click, region
selections (e.g., rectangular and elliptical regions, or free-form �lassos�), and

66 CHAPTER 6. VISUAL ANALYSIS

area cursors (e.g., �brushes� [25] or dynamic selectors such as the bubble
cursor [26], which selects the item currently closest to the mouse pointer).
These selections often determine a set of objects to be manipulated, enabling
highlighting, annotation, �ltering, or details-on-demand.

6.2.2 Navigate

How users navigate a visualization is in part determined by where they
start. One common pattern of navigation adheres to the widely cited visual
information-seeking mantra: �Overview �rst, zoom and �lter, then details-
on-demand.� [27].

Users may begin by taking a broad view of the data, including assessment
of prominent clusters, outliers, and potential data-quality issues. These ori-
enting actions can then be followed by more speci�c, detailed investigations
of data subsets. A common example is geographic maps: an overview might
show an overall territory, followed by zooming into regions of interest.

Of course, starting with an extended overview is not always advisable. An-
other navigation approach can be summarized as �Search, show context, ex-
pand on demand.� [28].

In either case, visualizations often function as viewports onto an information
space. Users need to manipulate these viewports to navigate the space. Com-
mon examples include scrolling or panning a display via scrollbars or mouse
drag, and zooming among di�erent levels using a zoom slider or scroll wheel
(�gure 6.2). Zooming does not have to follow a strict geometric metaphor:
semantic zooming [29] methods can modify both the amount of information
shown and how it is displayed as users move among levels of detail. In the
calendar in �gure 6.3, the display magni�es selected regions as users navigate
from months to days to hours. Semantic zooming reveals more details within
focal regions. Additionally, dynamic query widgets, such as range sliders for
the X and Y axes of a scatter plot, can �lter the visible data range and thus
provide a form of zooming within a chart.

Visualizations can provide cues to assist users' decisions of where and how
to navigate. The controls for view manipulation have often been invisible,
such as zooming/panning by mouse movement. Improved strategies facilitate
discovery by users and provide visible indication of settings in legends or
other ways, such as scrollbar positions, that provide informative feedback.
An important challenge is to show selected items, even when they are not
in view. For example, the results of a text search that are not currently in
view might be shown by markers in the scrollbar [30] or the periphery of the
display.

6.2. VIEW MANIPULATION 67

Figure 6.2: Map navigation.

6.2.3 Coordinate

Many analysis problems require multiple views, that enable users to see their
data from di�erent perspectives, and can facilitate comparison. For example,
Edward Tufte [31] advocates the use of small multiples: a collection of visu-
alizations placed in spatial proximity and typically using the same measures
and scales. As in �gure 6.4, these small multiples enable rapid comparison
of di�erent data dimensions or time slices. The repetition of the chart form
supports comparison among sectors. Plotting all the data in one chart would
otherwise clutter and obscure individual trends.

Alternatively, multiple view displays can use a variety of visualization types,
such as histograms, scatter plots, maps, or network diagrams, to show dif-
ferent projections of a multidimensional data set. Automatically generated
legends and axes are important for providing accurate annotations for users
and meaningful explanations when visualizations are shared. Legends and

68 CHAPTER 6. VISUAL ANALYSIS

Figure 6.3: Fisheye view.

Figure 6.4: Multiple views.

axes can also become control panels for changing color palettes, marker at-
tributes, variable ranges, or provenance information [32].

6.2.4 Organize

When users make use of multiple views, they face the corresponding challenge
of managing a collection of visualizations, laying them out in the most useful
way, given more space to important data, and placing views into comfortable
locations on screen.

Typical systems allow users to add, remove and reorganize views on the
workspace. As larger and multiple displays become more common, layout
organization tools will become decisive factors in creating e�ective user ex-
periences. Similarly, the demand for tablet and smartphone visualizations
will promote innovation in layout organizations that are compact and recon-
�gurable by simple gestures.

6.3. PROCESS AND PROVENANCE 69

6.3 Process and Provenance

Visual analytics is not limited to the generation and manipulation of visu-
alizations, it involves a process of iterative data exploration and interpreta-
tion. Visual analytics tools should preserve analytic provenance by keeping a
record of user actions and insights so that the history of work can be reviewed
and re�ned. Textual logs of activity have bene�ts, but visual overviews of
activity can be more compact and comprehensible. If users can annotate pat-
terns, outliers, and views of interest, they can document their observations,
questions, and hypotheses. In a networked environment, users should be em-
powered to share results and discuss with colleagues, coordinate the work
of multiple groups, or support processes that may take weeks and months.
Moreover, analysis tools can explicitly guide novices through common analy-
sis tasks, provide progress indicators for experts, or lead viewers through an
analysis story.

70 CHAPTER 6. VISUAL ANALYSIS

Part V

Results

71

Chapter 7

Visual Query Language (VQL)

In this section, the de�nition of the Visual Query Language (VQL) is pro-
vided, showing, for each visual element, the graphic symbol, and providing
its semantics expressed in natural language. This VQL is intended to map
the SCSQL query language (section �3.3). Its translation produces SCSQL
queries, and its main constructs (Functions and Objects) are mapped one to
one on the same SCSQL constructs. In addition to these constructs, which
have a direct mapping on SCSQL, the VQL consists of other graphic symbols,
needed during the query construction phase (e.g., Connections and Handle),
but which have no mapping with SCSQL. The translation is one-way, i.e.,
the system can translate a Visual Query into SCSQL, but the inverse passage
(from textual SCSQL query to Visual Query) is not foreseen.

Since SCSQL has been chosen as the Smart Vortex CQL reference, and since
SCSQL is based on AmosQL (section �3.3), which is based on the function
composition notion and the use of types and objects, the same approach
has been followed on designing the VQL. Because of these principles, this
Visual Query Language can be categorized as part of the already known Di-
agram based language class (section �5.1). Diagrams frequently adopted in
VQSs use, as basic (visual) components, either points or simple geometrical
�gures. Generally, a diagram adopts visual components that have a direct
correspondence with speci�c concept types. Lines denote logical relationship
types among elements. Sometimes labels are also included in diagrams for
denotational purposes, while inclusion of geometrical �gures are used to rep-
resent structural relationships. Diagrams emerge as the most popular visual
formalism used in existing VQSs [12].

Following the same approach on designing the presented VQL, simple geomet-
rical �gures (e.g. rectangles, circles) have been employed for base elements,
while lines denote logical relationship among SCSQL elements. As better

73

74 CHAPTER 7. VISUAL QUERY LANGUAGE (VQL)

explained later, circles represent SCSQL types or objects, and rectagles have
been chosen as a representation for SCSQL functions or function-related ele-
ments. In order to ease elements recognition and categorization, colors have
been adopted; for example, blue is associated with Types and Objects ele-
ments. When the user composes a query, she is aided by these facilitations
on recognising di�erent elements, accelerating the composition process.

7.1 VQL elements

An overview of all graphical elements composing the Visual Query Language
is presented. Object, Function, Select and Conditions elements have a direct
mapping with SCSQL statements. The Handle is used as one of the visual
composition facilitations.

7.1.1 Object

An Object is an instance of a Type, and can have a Value that depends from
its Type. It is directly mapped into corresponding AmosQL/SCSQL Object.
It is used to characterize both primitive Types (Integer, Number, Boolean,
Charstring, Date, Time, Timeval, Bag, Vector, Stream, etc...) and complex
Types, such as an hypothetical �Sensor� Type.

The graphical representation is an elliptical shape with a blue background.
In �gure above, from left to right, an Integer Object, an Integer Object with
a Value equals to three, and a Bag of Boolean Object (unordered set of
Boolean Objects with duplicates allowed) is shown.

7.1.2 Function

7.1. VQL ELEMENTS 75

Function elements (like their mathematical counterparts) have a set of �xed,
ordered, Function dependent Parameters of a certain Type, and returns a
Function dependent Object (the result of Function computation). It is di-
rectly mapped into corresponding AmosQL/SCSQL function.

The graphical representation is a rectangular shape with a red background.
Inside the rectangle, a string represents the Function name, and a set of
circles represent Function's Parameters.

7.1.3 Select

The Select construct is used to specify which elements will be mapped into the
SELECT SCSQL statement. It acts like a Function, its Parameters accepts
Object Types, and it can be composed with other Select constructs.

When creating a SELECT-FROM-WHERE statement, the DISTINCT clause
can be speci�ed, in order to remove duplicates from result.

A SELECT statement returns results represented as a Bag (unordered set of
Objects) or as a Vector (ordered sequence of Objects).

The graphical representation is a rectangular shape with a yellow back-
ground. Inside the rectangle, the square with a �D� inside represents the
DISTINCT clause; clicking on it activates (green) the clause, which will be
added to the SELECT statement during translation. Circles represent Pa-
rameters to pass to the SELECT statement, followed by a speci�c construct
to add/remove new/old Parameters (more on this later). The last two rectan-
gles maps the Type representation of returned results. These are like toggle
buttons, therefore only one Type a time can be activated (green).

7.1.4 Conditions

76 CHAPTER 7. VISUAL QUERY LANGUAGE (VQL)

The Conditions construct is used to specify which elements will be mapped
into the WHERE SCSQL statement. It acts like a Function, and it can be
composed (connecting it) with other Conditions constructs, in order to create
more complex Boolean expressions. Its Parameters accept Boolean Types,
and returns a Boolean Object.

Conditions Parameters can be added or removed at need using the already
mentioned construct. Each Parameter represents a WHERE condition, sep-
arated each other by an AND/OR Boolean operator.

The graphical representation is a rectangular shape with a purple back-
ground. Circles represent Parameters to pass to the WHERE statement,
followed by a speci�c construct to add/remove new/old Parameters (more on
this later). Parameters are separated by two rectangles representing Boolean
operators AND and OR; these rectangles are like toggle buttons, therefore
only one Boolean operator a time can be activated (green) by clicking on it.

7.1.5 Parameters

As explained, Functions, Selects and Conditions elements have associated
a set of Parameters, which represent arguments to pass to these elements.
Each Parameter has associated a Type; a Parameter will accepts only as-
sociated Types, or its Subtypes (so, for example, if Integer is a Subtype of
Float, a SUM(FLOAT, FLOAT) Function will accepts Floats and Integers
as Parameters, but not Charstrings). The Type accepted by the Parameter
is not recognizable from the base construct, but useful functionalities are de-
veloped to assist the user during the query creation process (see 9.3.1, where
an explanation about how to know which Types are accepted by a Parameter
is provided).

The graphical representation is a white (when unconnected, see section 7.1.6)
or blue (when connected) circle:

As already mentioned, two special Parameters are used to add and remove
Parameters from Select and Conditions elements: Add Parameter and Re-
move Parameter respectively. Select and Conditions elements are repre-
sented as special kinds of functions, and they both accept other elements as

7.1. VQL ELEMENTS 77

arguments, but unlike Function elements, where Parameters are Function-
dependent, in these elements Parameters can be added or removed at will;
the only constraint is that they cannot have less than one Parameter.

The graphical representation for the Add Parameter is a dashed circle with
a plus inside, and for the Remove Parameter is a dashed circle with a minus
inside. When clicking on them, a new Parameter is added, or an old one is
removed.

7.1.6 Connection

Figure 7.1: Connection between an Object and a Function Parameter.

Connections are used to specify a logical association between elements. In
particular, Connections specify that a certain Object, or a result of a Function
computation, is passed as Parameter to other elements.

The graphical representation is a line between connected elements.

Not all elements can be connected each other. Connections can be created
only between an element and a Parameter, but with some restrictions; in
particular, they can be created between:

• Object and Function/Select/Conditions Parameters;

• Function output and Function/Select/Conditions Parameters;

• Select output and Function Parameters;

• Conditions output and Conditions Parameters.

Conversely, Connections cannot be created between:

78 CHAPTER 7. VISUAL QUERY LANGUAGE (VQL)

• Select output and Conditions Parameters;

• Conditions output and Function/Select Parameters.

Assuming:

• O: Object,

• FP: Function Parameters,

• FR: Function result,

• SP: Select Parameters,

• SR: Select result,

• CP: Conditions Parameters,

• CR: Conditions result,

the following table resumes permitted Connections (vertical elements can or
cannot be connected with horizontal elements):

O FP FR SP SR CP CR
O X X X
FP
FR X X X
SP
SR X
CP
CR X

7.1.7 Handle

An Handle represents the Object returned from a Function, Select or Con-
ditions element, and the Object itself for an Object element. It is used to
connect elements with Parameters.

The graphical representation is a blue circle, placed on the right side of
the corresponding element, and is shown only when the element is selected
(9.3.1).

7.2. VISUAL QUERY EXAMPLE 79

7.2 Visual Query example

Following, a Visual Query example shows how all the presented Visual Query
elements are put together. For this purpose, this SCSQL query is proposed:

select �rst_n(heartbeat(1), 10);

which takes the sub-stream ending at position 10 of the stream heartbeat(1),
that emits a stream of numbers, starting from zero, at a frequency of one
second.

To build the query, following elements are needed:

• the �heartbeat� Function, with a Number Object as Parameter, instan-
tiated to one;

• the ��rst_n� Function, where the �rst Parameter is the stream of Num-
bers returned by the �heartbeat� Function, and the second Parameter
is a Number Object instantiated to ten;

• the Select construct with the ��rst_n� Function as Parameter, and
with Bag as returned Type.

�gure above shows how the Visual Query looks like once it has been created.

80 CHAPTER 7. VISUAL QUERY LANGUAGE (VQL)

Chapter 8

Query translation

Visual Queries have to be translated into its textual representations, in order
to be executed on the FDSMS. This chapter explains how the Visual Queries
can be represented, from a mathematical point of view, with oriented graphs,
and how this representation leads to a textual form.

A mathematical de�nition of each visual element is given, with proper-
ties connected to them, and with a generic representation through oriented
graphs.

The graph model must be formally correct, otherwise the translation algo-
rithm cannot be applied. Therefore, some conditions of translatability must
be veri�ed before proceding with the translation.

The description of the translation algorithm then follows, with an explanation
of its implementation in code. Two examples of Visual Query translation are
given, to better describe how it operate.

8.1 De�nitions

G = (V,A) : V = S ∪ C ∪ F ∪O ∪ P,A = (v, w) : v, w ∈ V

G is an oriented, connected graph, with no cycles.

V is a set of all vertices, composed by:

• S, a set of Select vertices,

• C, a set of Conditions vertices,

• F , a set of Function vertices,

• P , a set of Parameter vertices,

81

82 CHAPTER 8. QUERY TRANSLATION

• O, a set of Object vertices.

These arrays are used in code to represent previous sets:

var s e l e c t s = [] ;
var c ond i t i on s = [] ;
var f unc t i on s = [] ;
var parameters = [] ;
var ob j e c t s = [] ;

A is a set of ordered pairs of vertices, from v to w, called arcs.

In code, these arcs are partially represented by this array:

var connec t i ons = [] ;

Arcs between Functions, Selects and Conditions are not stored here, because
they are directly associated with the elements.

For a vertex, the number of inward arcs is called the indegree of the ver-
tex, and the number of outward arcs is its outdegree. The indegree is
denoteddeg−(v) and the outdegree as deg+(v). Notice that the output of
a Function (or a Select/Conditions) is represented by an inward arc, and
parameters input by an outward arc, despite its names.

table 8.1 summarizes, for each element, its visual representation and the
corresponding graph.

8.1.1 Boolean operators

B = b : b is aBoolean operator

Bp = (p, b) : p ∈ P, b ∈ B: association between a parameter and a Boolean
operator.

In code, each Conditions element has an array associated, which stores the
list of Boolean operators:

8.1. DEFINITIONS 83

condit ionsElement . booleanOperators = [] ;

To retrieve the i-th Boolean operator:

condit ionsElement . booleanOperators [i] . va lue

8.1.2 Objects names

In code, an array is used to store the Objects, and each Object has some
properties, like Type and Value. When the query is translated, each Object
without a Value is translated into a variable with a unique name, in order to
generate the FROM clause. The variable name is composed of a string �v�,
followed by the index of the Object in the array, plus one; so, for example,

ob j e c t s [3]

will have �v4� as associated variable.

This is performed by the following function:

f unc t i on a s s i gnVar i ab l e (ob j e c t) {
var v = new Object () ;
v . type = ob j e c t . objectType ;
v . name = "v" + array . indexOf (ob j ec t s , ob j e c t) + 1 ;
re turn v ;

}

which, given an Object, returns a representing variable.

In this mathematical model is assumed that each Object already has an
associated variable, which can be retrieved through the function name(o)
(explained later).

8.1.3 Generic graph

The following �gure depict a generic Visual Query representation through
its associated graph model. The starting Select and the Conditions root are
also highlighted, and are deeply described later.

84 CHAPTER 8. QUERY TRANSLATION

8.1.4 Functions used in the algorithms

adj(v): returns the set of vertices adjacent to v, i.e. connected to v by an
arc, following the arc direction (adj(v) = w ∈ V : (v, w) ∈ A).

name(v): returns the name of the corresponding vertex, so for example:

• for a Function named �abs�: name(f) = ”abs”,

• for an Object: name(o1) = ”v1”.

type(o): returns the Type of given Object.

value(o): returns the Value of given Object, or NIL if it has no associated
value.

distinct(s): returns true if the �distinct� clause is selected on given Select
element, false otherwise.

boolop(p): given a (Conditions) parameter, returns the associated boolean
operator (boolop(p) = b ∈ B : (p, b) ∈ Bp), or NIL otherwise.

8.2 Conditions of translatability

Following conditions must be true, in order to have a translatable query:

• G is connected,

• G doesn't contain closed loops composed of F and S vertices,

• ∀s ∈ S, deg−(s) ∈ N0, deg
+(s) ∈ N,

8.2. CONDITIONS OF TRANSLATABILITY 85

• only one s ∈ S has deg−(s) = 0, every other one has deg−(s) > 0
(formally: ∃!s ∈ S : deg−(s) = 0,∀s′ ∈ S − s, deg−(s) > 0),

• ∀c ∈ C, deg−(c) ∈ N0, deg
+(c) = n, n ∈ N, n ≥ 2,

• ∀f ∈ F, deg−(f) ∈ N, deg+(f) ∈ N,

• ∀p ∈ P, deg−(p) = 1, deg+(p) = 1,

• ∀o ∈ O, deg−(o) ∈ N, deg+(o) = 0.

Some of these conditions are assured by the hypothesis, some others are
veri�ed by the correctness tests.

8.2.1 Hypothesis

These conditions are constraints given by the VQE, therefore they are always
true:

• deg−(s) ∈ N0: Select elements can have from 0 to n output connections;

• deg+(s) ∈ N: Select elements can have from 1 to n parameters (By
default, they have 1 parameter. Parameters cannot be less than 1, and
can be added without limits);

• deg−(c) ∈ N0: Conditions elements can have from 0 to n output con-
nections;

• deg+(c) = n, n ∈ N, n ≥ 2: Conditions elements can have from 2 to n
parameters (By default, they have 2 parameter. Parameters cannot be
less than 2, and can be added without limits);

• deg−(p) = 1: The arc between a Function (or Select or Conditions)
and a Parameter is directly implied by the Function creation;

• deg+(o) = 0: Objects cannot have outward arcs.

8.2.2 Correctness tests

Following tests are used to check these three conditions:

• G is connected,

• G doesn't contain closed loops composed of F and S vertices,

86 CHAPTER 8. QUERY TRANSLATION

• only one s ∈ S has deg−(s) = 0, every other one has deg−(s) > 0.

If these conditions are veri�ed, the query can be translated.

Elements connections

G is connected if:

• all parameters are connected: deg+(p) = 1, ∀p ∈ P or ∀p ∈ P, ∃a ∈ A :
a = (p, v), v ∈ V − P ;

• all functions have at least one output connection: deg−(f) > 0,∀f ∈ F
or ∀f ∈ F, ∃a ∈ A : a = (p, f), p ∈ P ;

• all objects have at least one connection: deg−(o) > 0,∀o ∈ O or ∀o ∈
O, ∃a ∈ A : a = (p, o), p ∈ P .

To check if all parameters are connected, the following algorithm is used:

var al lParametersConnected = true ;
f o r (var i = 0 ; i < parameters . l ength ; i++) {

var parameter = parameters [i] ;
i f (! parameter . connected) {

al lParametersConnected = f a l s e ;
break ;

}
}

This is an example of a Function where not all parameters are connected:

To check if all functions have at least one output connection, the following
algorithm is used:

var a l lFunct ionsHaveConnect ions = true ;
f o r (var i = 0 ; i < func t i on s . l ength ; i++) {

var f = func t i on s [i] ;
i f (f . connec t i ons . l ength == 0) {

a l lFunct ionsHaveConnect ions = f a l s e ;
break ;

}
}

8.2. CONDITIONS OF TRANSLATABILITY 87

The previous example is also an example of Function without output con-
nections.

To check if all objects have at least one connection, the following algorithm
is used:

var a l lObjectsHaveConnect ions = true ;
f o r (var i = 0 ; i < ob j e c t s . l ength ; i++) {

var ob j e c t = ob j e c t s [i] ;
i f (ob j e c t . connect ions . l ength == 0) {

a l lObjectsHaveConnect ions = f a l s e ;
break ;

}
}

This is an example of Object without connections:

Closed loops

Closed loops are meant as Function and Select elements connected each other.
This is not permitted, otherwise the translation algorithm falls into an in�nite
loop and the textual query cannot be created.

De�nition of cyclic directed graph: Cn∈N = (V,A), V = v1, v2, ..., vn, A =
(vi, vi+1 : i ∈ Nn−1)(vn, v1).

In this context, a closed loop is a subgraph of graph G, isomorphic to a
cyclic directed graph Cn, composed only of S and F vertices. Formally:
L = (V ′, A′) closed loop : V ′ ⊆ S ∪ F ∪ P,#V ′ = n, n ∈ N, n ≥ 4, A′ ⊆(

V ′

2

)
∩ A,L isomorphic toCn.

An example of closed loop:

88 CHAPTER 8. QUERY TRANSLATION

In order to have a translatable query, G cannot contains closed loops: L : L closed loop =
/O

Following, the algorithm used to check the existence of closed loops. When a
closed loop is found, the algorithm stops, and the query cannot be translated.

FindClosedLoops(r, c) :

1. if r = c then

2. < closed loop found >

3. end.

4. for each v ∈ adj(c)

5. if v ∈ S ∪ F ∪ P then

6. F indClosedLoops(r, v)

7. end.

This is a recursive function, which walks through the graph, starting from a
Select or a Function vertex (the root r); it follows only the arcs connected
with Select, Function or Parameter elements, and if the root is reached again,
the graph G contains a closed loop. c is the currently evaluated vertex.

In code:

f unc t i on closedLoopFound (rootElement , currentElement) {
i f (rootElement === currentElement) {

re turn true ;
}
i f (currentElement . type === " ob j e c t "
| | currentElement . type === " cond i t i on s "
| | (currentElement . type === " s e l e c t "

&& currentElement . connect ions === [])) {
re turn f a l s e ;

}
f o r (var i = 0 ; i < currentElement . connec t i ons . l ength ;

i++) {
var connectedElement = currentElement . connec t i ons [i

] . d e s t i n a t i on . element ;

8.2. CONDITIONS OF TRANSLATABILITY 89

i f (closedLoopFound (rootElement , connectedElement))
{
re turn t rue ;

}
}
re turn f a l s e ;

}

1. for each v ∈ S ∪ F

2. for eachw ∈ adj(v)

3. F indClosedLoops(v, w)

4. end.

Previous function is applied on every Select and Function vertex.
In code:

f o r (var i = 0 ; i < s e l e c t s . l ength ; i++) {
var s e l e c t = s e l e c t s [i] ;
f o r (var i = 0 ; i < s e l e c t . connect ions . l ength ; i++) {

var connectedElement = s e l e c t . connec t i ons [i] .
d e s t i n a t i on . element ;

i f (closedLoopFound (s e l e c t , connectedElement)) {
<error>
return ;

}
}

}
f o r (var i = 0 ; i < func t i on s . l ength ; i++) {

var f = func t i on s [i] ;
f o r (var i = 0 ; i < f . connec t i ons . l ength ; i++) {

var connectedElement = f . connect ions [i] . d e s t i n a t i on
. element ;

i f (closedLoopFound (f , connectedElement)) {
<error>
return ;

}
}

}

Find starting Select element

All Select elements must have at least one output connection, except from
one, which must have no output connections.This latter one is the starting
Select, that is the Select element from which the query translation will start.

90 CHAPTER 8. QUERY TRANSLATION

Let's take for example a query like:

select count(select p from Person p);

where we want to count how many people there are on the DataBase. In this
case there are two Select statements, and is it visually built using two Select
elements. But only the �rst one, on the left, is the Select element which the
query starts with.

If one, and only one, starting Select can be found, then the third condition
is veri�ed, and the the query translation can start.

Following, the algorithm used to verify the third condition:

1. startingselect← NIL

2. for each s ∈ S

3. if deg−(s) = 0 then

4. if startingselect = NIL then

5. startingselect← s

6. else

7. < more than one swith deg−(s) = 0 >

8. end.

9. if startingselect = NIL then

10. < no swith deg−(s) = 0 >

11. end.

Every Select element is evaluated.

Line 3: check if current Select has no output connections.

Lines 4-5: current Select has no output connections, and if this is the �rst
encountered one, set it as the starting Select.

Lines 6-7: current Select has no output connections, therefore it could be a
valid candidate for the starting Select; but a starting Select has been already
found, therefore there is more than one possible candidate, which means that
the third condition is not veri�ed.

8.3. ALGORITHM 91

Lines 9-10: if no starting Select has been found, the third condition is still
not veri�ed.

Lines 7 and 10 tell that the query cannot be translated.

In code:

var s t a r t i n g S e l e c t = undef ined ;
f o r (var i = 0 ; i < s e l e c t s . l ength ; i++) {

var s e l e c t = s e l e c t s [i] ;
i f (s e l e c t . connect ions . l ength == 0) {

i f (s t a r t i n g S e l e c t === undef ined) {
s t a r t i n g S e l e c t = s e l e c t ;

}
e l s e {

<e r r o r : more than one s t a r t i n g S e l e c t found>
return ;

}
}

}
i f (s t a r t i n g S e l e c t === undef ined) {

<e r r o r : no s t a r t i n g S e l e c t found>
return ;

}

8.3 Algorithm

Following, the algorithm used to translate the Visual Query into a Textual
Query is presented.

GetConnectedV arsToConditions(v, connectedvars) :

1. if v ∈ O then

2. if v /∈ connectedvars then

3. connectedvars← connectedvars ∪ v

4. else

5. for each p ∈ adj(v)

6. GetConnectedV arsToConditions(adj(p), connectedvars)

7. end.

This function walks through the graph, starting from a certain Conditions
vertex, and collects all the reachable Objects into the connectedvars set.

Lines 1-3: if given vertex v is an Object, and if it doesn't belong to the
connectedvars set, add it to the set.

92 CHAPTER 8. QUERY TRANSLATION

Lines 4-6: otherwise (v is not an Object) recursively walk through the graph,
following all the arcs.

In code:

f unc t i on getConnectedVarsToConditions (element ,
connectedVars) {
i f (element . type === " ob j e c t ") {

var v = as s i gnVar i ab l e (element) ;
// i f v not in connectedVars
i f (array . indexOf (connectedVars , v) == −1) {

// add i t to connectedVars
connectedVars . push (v) ;

}
}
e l s e {

// f o r each cond i t i on s parameter
f o r (var i = 0 ; i < element . parameters . l ength ; i

++) {
var parameter = element . parameters [i] ;
getConnectedVarsToConditions (parameter .

connect ion . source , connectedVars) ;
}

}
}

FindConditionsRoot(conditionsroot, fromvars) :

1. for each c ∈ C

2. if deg−(c) = 0 then

3. connectedvars← /O

4. GetConnectedV arsToConditions(c, connectedvars)

5. if fromvars ∩ connectedvars 6= /O then

6. conditionsroot← c

7. end.

Function used to �nd a Conditions root for current SELECT subquery. Con-
ditions elements can be combined, in order to create more complex WHERE
clauses, therefore the algorithm must �nd the most external one.

Lines 1-2: consider only Conditions without output connections.

Lines 3-4: get the Objects reachable from current Conditions.

Lines 5-6: if at least one of these Object is reachable also from currently
considered Select element (so it's contained into the fromvars and the con-
nectedvars sets), the Conditions root has been found.

8.3. ALGORITHM 93

In code:

f unc t i on f indCondit ionsRoot (fromVars) {
f o r (var i = 0 ; i < cond i t i on s . l ength ; i++) {

var cond i t i on = cond i t i on s [i] ;
i f (cond i t i on . connec t i ons . l ength == 0) {

var connectedVars = [] ;
getConnectedVarsToConditions (cond i t ion ,

connectedVars) ;
f o r (var connectedVar in connectedVars) {

f o r (var fromVar in fromVars) {
i f (connectedVar . name === fromVar . name)

{
re turn cond i t i on ;

}
}

}
}

}
}

BuildQueryFromParameter(query, v, fromvars) :

1. if v ∈ O then

2. if value(v) 6= NIL then

3. query ← query + value(v)

4. end.

5. else

6. if v /∈ fromvars then

7. fromvars← fromvars ∪ v

8. query ← query + name(v)

9. end.

10. if v ∈ F then

11. query ← query + name(v) + ”(”

12. for each p ∈ adj(v)

13. BuildQueryFromParameter(query, adj(p), fromvars)

14. if p is not the last one then

15. query ← query + ”, ”

16. else

17. query ← query + �) �

94 CHAPTER 8. QUERY TRANSLATION

18. end.

19. if v ∈ S then

20. BuildQueryFromSelect(query, v)

21. if v ∈ C then

22. query ← query + ”(”

23. for each p ∈ adj(v)

24. BuildQueryFromParameter(query, adj(p), fromvars)

25. if p is not the last one then

26. query ← query + ”” + boolop(p) + ” ”

27. else

28. query ← query + �) �

29. end.

30. end.

Builds the Textual Query, starting from a Parameter, and walking through
the graph, following the arcs. This is a recursive function.

Lines 1-9: when an Object is reached, if it has a Value, add the Value to the
Textual Query, otherwise add the variable name to the Textual Query, and
add the Object to the fromvars set.

Lines 10-18: when an Function is reached, add its name to the Textual
Query, and build the Textual Query recursively, for each adjacent Parameter.
Separate Parameters with commas, and when the last Parameter (for this
Function) is reached, add a closed parenthesis to the Textual Query.

Lines 19-20: when an Select is reached, start to build a new SELECT sub-
query.

Lines 21-29: when an Conditions is reached, build the Textual Query re-
cursively, for each adjacent Parameter. Each Parameter is separated by the
corresponding Boolean operator.

In code:

f unc t i on buildTextualQueryParameter (element , fromVars) {
switch (element . type) {
case " ob j e c t " :

i f (e lement . va lue !== undef ined) {
re turn element . va lue ;

}
e l s e {

var v = as s i gnVar i ab l e (element) ;
// i f v not in fromVars

8.3. ALGORITHM 95

var vIsInFromVars = f a l s e ;
f o r (var i = 0 ; i < fromVars . l ength ; i++) {

var fromVar = fromVars [i] ;
i f (v . name === fromVar . name) {

vIsInFromVars = true ;
}

}
i f (! vIsInFromVars) {

// add i t to fromVars
fromVars . push (v) ;

}
re turn v . name ;

}
break ;

case " func t i on " :
// textualQuery w i l l be l i k e foo (par1 , par2 , par3)
var textualQuery = element . name + " (" ;
f o r (var i = 0 ; i < element . parameters . l ength ; i

++) {
var parameter = element . parameters [i] ;
textualQuery += buildTextualQueryParameter (

parameter . connect ion . source , fromVars) ;
// i f i s not the l a s t parameter
i f (i < element . parameters . l ength − 1) {

textualQuery += " , " ;
}
e l s e {

textualQuery += ") " ;
}

}
re turn textualQuery ;
break ;

case " s e l e c t " :
r e turn bui ldTextua lQuerySe lect (element) ;
break ;

case " cond i t i on s " :
// textualQuery w i l l be l i k e (par1 and | or par2 and |

or par3)
var textualQuery = " (" ;
f o r (var i = 0 ; i < element . parameters . l ength ; i

++) {
var parameter = element . parameters [i] ;
textualQuery += buildTextualQueryParameter (

96 CHAPTER 8. QUERY TRANSLATION

parameter . connect ion . source , fromVars) ;
// i f i s not the l a s t parameter
i f (i < element . parameters . l ength − 1) {

textualQuery += " " + element .
booleanOperators [i] . va lue + " " ;

}
e l s e {

textualQuery += ") " ;
}

}
re turn textualQuery ;
break ;

}
}

BuildQueryFromSelect(query, s) :

1. fromvars← /O

2. selectclause← ”select ”

3. if distinct(s) = true then

4. selectclause← selectclause+ ”distinct ”

5. for each p ∈ adj(s)

6. BuildQueryFromParameter(selectclause, adj(p), fromvars)

7. if p is not the last one then

8. selectclause← selectclause+ ”, ”

9. conditionsroot← NIL

10. F indConditionsRoot(conditionsroot, fromvars)

11. whereclause← NIL

12. if conditionsroot 6= NILthen

13. whereclause← ”where”

14. for each p ∈ adj(conditionsroot)

15. BuildQueryFromParameter(whereclause, adj(p), fromvars)

16. if p is not the last one then

17. whereclause← whereclause+ ”” + boolop(p) + ””

18. fromclause← NIL

19. if fromvars 6= /O then

20. fromclause← ” from ”

21. for each fv ∈ fromvars

22. fromclause← fromclause+ type(fv) + ” ” + name(fv)

8.3. ALGORITHM 97

23. if fv is not the last one then

24. fromclause← fromclause+ ”, ”

25. query ← query + selectclause

26. if fromclause 6= NIL then

27. query ← query + fromclause

28. if whereclause 6= NIL then

29. query ← query + whereclause

30. end.

Builds a SELECT subquery, starting from a given Select, and walking through
the graph, following the arcs. This is a recursive function.

Lines 1-2: initialize variables.

Lines 3-6: build the SELECT subquery from each Parameter adjacent to
current Select.

Lines 7-8: �nd the Conditions root.

Lines 9-15: if a Conditions root has been found, build the WHERE clause.

Lines 16-22: build the FROM clause, if fromvars set is not empty.

Lines 23-27: build the SELECT subquery.

In code:

f unc t i on bui ldTextua lQuerySe lect (element) {
var fromVars = [] ;
// bu i ld SELECT c l au s e
var s e l e c tC l au s e = " s e l e c t " ;
i f (e lement . d i s t i n c t S e l e c t e d) {

s e l e c tC l au s e += " d i s t i n c t " ;
}
f o r (var i = 0 ; i < element . parameters . l ength ; i++) {

var parameter = element . parameters [i] ;
s e l e c tC l au s e += buildTextualQueryParameter (

parameter . connect ion . source , fromVars) ;
// i f i s not the l a s t parameter
i f (i < element . parameters . l ength − 1) {

s e l e c tC l au s e += " , " ;
}

}
var condi t ionsRoot = f indCondit ionsRoot (fromVars) ;
i f (cond i t ionsRoot !== undef ined) {

// bu i ld WHERE c l au s e
var whereClause = " where " ;

98 CHAPTER 8. QUERY TRANSLATION

f o r (var i = 0 ; i < condi t ionsRoot . parameters .
l ength ; i++) {
var parameter = condi t ionsRoot . parameters [i] ;
whereClause += buildTextualQueryParameter (

parameter . connect ion . source , fromVars) ;
i f (i < condi t ionsRoot . parameters . l ength − 1) {

// separa t e parameters with boolean
operator

whereClause += " " + condi t ionsRoot .
booleanOperators [i] . va lue + " " ;

}
}

}
i f (fromVars . l ength > 0) {

// bu i ld FROM c lau s e
var fromClause = " from " ;
f o r (var i = 0 ; i < fromVars . l ength ; i++) {

var v = fromVars [i] ;
fromClause += v . type + " " + v . name ;
i f (i < fromVars . l ength − 1) {

fromClause += " , " ;
}

}
}
var textualQuery = s e l e c tC l au s e ;
i f (fromClause !== undef ined) {

textualQuery += fromClause ;
}
i f (whereClause !== undef ined) {

textualQuery += whereClause ;
}
re turn textualQuery ;

}

1. query ← ””

2. BuildQueryFromSelect(query, startingselect)

3. query ← query + ”; ”

Build the Textual Query from the starting Select. Add a semicolon to close
the query.

In code:

var textualQuery = bui ldTextua lQuerySe lect (s t a r t i n g S e l e c t) ;
textualQuery += " ; " ;

8.4. EXAMPLES 99

8.4 Examples

These examples describes how the translation algorithm is applied to a Visual
Query, and which values each element assumes.

8.4.1 Simple example

Let us take back the already presented Visual Query example (section �7.2),
where the Visual Query is represented by the following �gure:

and where the corresponding textual query is:

select �rst_n(heartbeat(1),10);

The corresponding graph is:

100 CHAPTER 8. QUERY TRANSLATION

and its properties are:

S = s1, C = Ø, F = f1, f2, P = p1, p2, p3, p4, O = o1, o2,

A = (s1, p1), (p1, f1), (f1, p2), (p2, f2), (f2, p4), (p4, o2), (f1, p3), (p3, o1),

value(o1) = 10, type(o1) = ”Number”,

value(o2) = 1, type(o2) = ”Number”,

name(f1) = ”firstn”, name(f2) = ”heartbeat”,

deg − (s1) = 0, deg + (s1) = 1,

deg − (p1) = 1, deg + (p1) = 1,

deg − (f1) = 1, deg + (f1) = 2,

...

adj(s1) = p1, adj(p1) = f1, adj(f1) = p2, p3, ...

Correctness tests

G is connected:

• ∀p ∈ P, deg+(p) = 1→!,

• ∀f ∈ F, deg−(f) > 0→!,

• ∀o ∈ O, deg−(o) > 0→!.

G does not contains closed loops composed of F and S vertices.

Let's �nd the starting Select:

1. startingselect : NIL

2. s1 :

3. deg−(s1) = 0→!
4. startingselect = NIL→!
5. startingselect : s1

All conditions are veri�ed, therefore the query can be translated.

Query translation

query : ””

BuildQueryFromSelect(query, startingselect)

fromvars : /O

selectclause : ”select ”

8.4. EXAMPLES 101

distinct(startingselect) = true→#
p1 :

BuildQueryFromParameter(selectclause, f1, fromvars)

f1 ∈ F →!
selectclause : ”select firstn(”

p2 :

BuildQueryFromParameter(selectclause, f2, fromvars)

f2 ∈ F →!
selectclause : ”select firstn(heartbeat(”

p4 :

BuildQueryFromParameter(selectclause, o2, fromvars)

o2 ∈ O →!
value(o2) 6= NIL→!
selectclause : ”select firstn(heartbeat(1”

p4 is not the last one→#
selectclause : ”select firstn(heartbeat(1)”

p2 is not the last one→#
selectclause : ”select firstn(heartbeat(1), ”

p3 :

BuildQueryFromParameter(selectclause, o1, fromvars)

o1 ∈ O →!
value(o1) 6= NIL→!
selectclause : ”select firstn(heartbeat(1), 10”

p3is not the last one→#
selectclause : ”select firstn(heartbeat(1), 10)”

conditionsroot : NIL

FindConditionsRoot(conditionsroot, fromvars)

C = /O→!
whereclause : NIL

conditionsroot 6= NIL→#
fromclause : NIL

fromvars 6= /O →#
query : ”select firstn(heartbeat(1), 10)”

102 CHAPTER 8. QUERY TRANSLATION

fromclause 6= NIL→#

whereclause 6= NIL→#

query : ”select firstn(heartbeat(1), 10); ”

8.4.2 Complex example

Let us now see a more complex example. This example comes from a user
scenario where data stored in log �les, containing analog/digital measure-
ments produced by a proper control system, is considered. This control
system measures data from a wood waste shredder, that includes two driven
machine shafts, three electric motors and four hydraulic �ow pumps. Is now
supposed that the user, an engineer, wants to retrieve the trend related to the
pressure B-side pump1, and she wants to compare it with a certain threshold.

The log �le is column based (<block>,<tag>,<value1>,<value2>):

• there are four possible blocks (header, alarms/warnings, settings and
log data);

• tag depends on the type of a block and provides more details about it;

• value represents the values associated with the tag or, in case of log
data, the timestamp and the measure.

This is the Visual Query used to retrieved desired data:

8.4. EXAMPLES 103

The corresponding textual query is:

select vectorelement(v01, 4), vectorelement(v01, 6) from Vector
v01 where equal('REG407', vectorelement(v01, 2)) and

equal(vectorelement(v01, 0), 'L') and equal(v01,
in(read_ntuples('E01PS10-2991-20120511114235.CSV')));

and here's the corresponding graph:

104 CHAPTER 8. QUERY TRANSLATION

8.4. EXAMPLES 105

S = s1, C = c1, F = f1, f2, . . . , f9, P = p1, p2, . . . , p21, O = o1, o2, . . . , o8,

A = (s1, p1), (s1, p2), . . .,

value(o1) = 4, type(o1) = ”Integer”,

value(o2) = NIL, type(o2) = ”V ector”, name(o2) = ”v01” ,

value(o3) = 6, type(o3) = ”Integer”,

value(o4) = ”REG407”, type(o4) = ”Charstring”,

value(o5) = ”L”, type(o5) = ”Charstring”,

value(o6) = 2, type(o6) = ”Integer”,

value(o7) = 0, type(o7) = ”Integer”,

value(o8) = ”E01PS10−2991−20120511114235.CSV ”, type(o8) = ”Charstring”,

name(f1) = ”vectorelement”, name(f2) = ”vectorelement”, name(f3) =
”equal”, ...

boolop(p7) = ”and”, boolop(p8) = ”and”,

deg−(s1) = 0, deg+(s1) = 1,

deg−(p1) = 1, deg+(p1) = 1,

deg−(f1) = 1, deg+(f1) = 2, ...

adj(s1) = p1, adj(p1) = f1, adj(f1) = p3, p4, ...

Correctness tests

G is connected:

• ∀p ∈ P, deg+(p) = 1→!,

• ∀f ∈ F, deg−(f) > 0→!,

• ∀o ∈ O, deg−(o) > 0→!.

G does not contains closed loops composed of F and S vertices.

Let's �nd the starting Select:

1. startingselect : NIL

2. s1 :

3. deg−(s1) = 0→!
4. startingselect = NIL→!
5. startingselect : s1

All conditions are veri�ed, therefore the query can be translated.

106 CHAPTER 8. QUERY TRANSLATION

Query translation

query : ””

BuildQueryFromSelect(query, startingselect)

fromvars : /O

selectclause : ”select ”

distinct(startingselect) = true→#
p1 :

BuildQueryFromParameter(selectclause, f1, fromvars)

f1 ∈ F →!
selectclause : ”select vectorelement(”

p3 :

BuildQueryFromParameter(selectclause, o2, fromvars)

o2 ∈ O →!
value(o2) 6= NIL→#
fromvars : o2

selectclause : ”select vectorelement(v01”

p3 is not the last one→#
selectclause : ”select vectorelement(v01, ”

p4 :

BuildQueryFromParameter(selectclause, o1, fromvars)

o1 ∈ O →!
value(o1) 6= NIL→!
selectclause : ”select vectorelement(v01, 4”

p4 is not the last one→#
selectclause : ”select vectorelement(v01, 4)”

p2 :

. . .

selectclause : ”select vectorelement(v01, 4), vectorelement(v01, 6)”

conditionsroot : NIL

FindConditionsRoot(conditionsroot, fromvars)

c1 :

deg−(c1) = 0→!
connectedvars : /O

8.4. EXAMPLES 107

GetConnectedV arsToConditions(c1, connectedvars)

c1 ∈ O →#
p7 :

GetConnectedV arsToConditions(f3, connectedvars)

. . .

GetConnectedV arsToConditions(o2, connectedvars)

o2 ∈ O →!
o2 /∈ connectedvars→!
connectedvars : o2

p8 :

GetConnectedV arsToConditions(f4, connectedvars)

p9 :

GetConnectedV arsToConditions(f5, connectedvars)

. . .

fromvars ∩ connectedvars = o2 6= Ø→!
conditionsroot : c1

whereclause : NIL

conditionsroot 6= NIL→!
whereclause : ”where ”

p7 :

BuildQueryFromParameter(whereclause, f3, fromvars)

f3 ∈ F →!
whereclause : ”where equal(”

p :

BuildQueryFromParameter(whereclause, o4, fromvars)

. . .

p :

BuildQueryFromParameter(whereclause, f, fromvars)

. . .

p7 is not the last one→!
whereclause : ”where equal(′REG407′, vectorelement(v01, 2)) and”

p8 :

BuildQueryFromParameter(whereclause, f4, fromvars)

. . .

108 CHAPTER 8. QUERY TRANSLATION

p8 is not the last one→!
whereclause : ”where equal(′REG407′, vectorelement(v01, 2))

and equal(vectorelement(v01, 0), ′L′) and ”

p9 :

BuildQueryFromParameter(whereclause, f5, fromvars)

. . .

p9 is not the last one→#
fromclause : NIL

fromvars 6= /O →!
fromclause : ” from ”

o2 :

fromclause : ” fromV ectorv01”

query : ”select vectorelement(v01, 4), vectorelement(v01, 6)”

fromclause 6= NIL→!
query : ”select vectorelement(v01, 4), vectorelement(v01, 6) fromV ector v01”

whereclause 6= NIL→!
query : ”select vectorelement(v01, 4), vectorelement(v01, 6) fromV ector v01

where equal(′REG407′, vectorelement(v01, 2)) and

equal(vectorelement(v01, 0), ′L′)) and

equal(v01, in(readntuples(′E01PS10−2991−20120511114235.CSV ′)))”

query : ”select vectorelement(v01, 4), vectorelement(v01, 6) fromV ector v01

where equal(′REG407′, vectorelement(v01, 2)) and

equal(vectorelement(v01, 0), ′L′)) and

equal(v01, in(readntuples(′E01PS10−2991−20120511114235.CSV ′))); ”

8.4. EXAMPLES 109

Element Visual Element Corresponding Graph

Select

Conditions

Function

Parameters

Object

Table 8.1: Elements and corresponding graphs.

110 CHAPTER 8. QUERY TRANSLATION

Chapter 9

Prototype

In this chapter, the prototype developed to implement the Smart Vortex
project's requirements is presented. The prototype can be divided in two
parts: the web application and the FDSMS bridge. The web application
can be seen as the client side application, used by users to compose Visual
Queries, choose how to visualize their execution results, and create groups
of queries, called dashboards, with a monitoring or data analysis aim. The
FDSMS bridge is used to execute queries on SCSQ and get results back.

An overview of adopted technologies is �rstly given. The overall architecture
of the prototype is then described, illustrating how the elements are related
and how they communicate.

A comprehensive description of each component is then given, which elements
compose them, how they are implemented in code.

9.1 Technologies

In the web application, web pages are rendered from HTML and CSS/LESS,
using JavaScript to control the browser and communicate asynchronously
with the web server. Following, a comprehensive list of the adopted tech-
nologies:

• LESS [33] is an extension of CSS, which add dynamic behaviour to it,
and it must be compiled or translated into CSS in order to be read by
web browsers.

• JavaScript is used to dynamically operate on HTML elements and to
retrieve data from the web server, using an AJAX paradigm with JSON
as data exchange format.

111

112 CHAPTER 9. PROTOTYPE

• Bootstrap from Twitter [34] is a LESS-based front-end framework, used
to build the application user interface. Some plugins, like modal di-
alogs, alerts etc., have been employed too.

• Dojo [35]. A platform-independent JavaScript framework. It is used as
the main foundation for DOM manipulation, events handling and web
server asynchronous communications. It also has support for canvas
drawing, therefore it has been used to create the Visual Query Editor.

• jQuery [36] is a JavaScript library. Bootstrap plugins and following
libraries depends on it.

• jQuery UI [37] is a User Interface library built on top of jQuery. Some
of its widgets have been integrated in the User Interface, like the Input
spinner.

• Timepicker [38]. Date and time picker, used to set values for Date,
Time and Timeval objects.

• Highcharts [39] is a charting library written in pure JavaScript. Used
to render lines, bars and points charts.

• Canvas Gauge [40] draws gauge charts using pure JavaScript and HTML5
canvas.

Tomcat has been chosen as the web server to handle user requests. Java is
the main programming language, and JSP is used to render web pages at
server side. MySQL has been adopted to implement the User DataBase, and
JDBC drivers are employed to access it through the web server.
FDSMS bridge is written in the Java language, and uses TCP as communi-
cation protocol and JSON as data exchange format.

9.2 Architecture

This section describes the general architecture adopted for the overall pro-
totype, and how single elements are related each other. A deep explanation
about how each component is organized in �les is also given.

9.2.1 Web application

The web application is now presented. It can be seen as the client side
application, and can be divided into three components: presentation layer
and data exchange, web server and User DataBase.

9.2. ARCHITECTURE 113

The presentation layer is the real connection between the user and the whole
application. Its purpose is to let users work on queries and visualize their
results, through a web-based user interface. Being composed of web pages, it
is accessed by a desktop web browser. These web pages are dinamically up-
dated and modi�ed using JavaScript instructions, which send asynchronous
requests to the web server, retrieving data to show up on web pages.

The web server is used to handle users requests, replying with web pages
and/or data retrieved from the User DataBase. It also handles the com-
munications with the FDSMS. Since it has responsibility for communication
between di�erent application actors, it can be seen as the core of the proto-
type. It is composed of di�erent resources and �les, in order to handle these
tasks:

• Index.jsp: web application starting point, it creates a new DBmanager
instance and it stores it into the user session, which is then retrieved by
other pages in order to access DataBase data and build HMTL pages.

• Home.jsp: web page with dashboards and templates lists. Dashboards
and templates can be created, duplicated and removed.

• Dashboard.jsp: displays a dashboard, which is a collection of queries
and their visualizations. Queries can be created, duplicated or removed
on the dashboard.

• Query.jsp: web page used to create a Visual Query and de�ne a visu-
alization for its results.

• Template.jsp: same as query.jsp, but for templates. Templates are not
meant for execution, therefore they cannot have a results visualization.

• Exec.jsp: replies to asynchronous client requests. In fact, it serves as
a �gate� between the presentation layer and the User DataBase or the
FDSMS bridge.

• DBmanager.java: it handles User DataBase connection and communi-
cation, using convenient methods to retrieve and to store data.

• Dashboard.java, Query.java, Template.java, Comment.java: classes rep-
resenting corresponding User DataBase entities.

• FDSMSclient.java: it implements methods to handle communications
with the FDSMS bridge, to execute queries on it and to retrieve exe-
cution results.

114 CHAPTER 9. PROTOTYPE

• JavaScript �les: Bootstrap plugins, JavaScript libraries and other scripts
used by web pages. They contains dynamic code used to interact with
the HTML pages, and to exchange asynchronous data with the web
server.

• CSS/LESS �les: web pages style-related �les. Some CSS �les are used
by JavaScript libraries.

• Images: graphic resources incorporated in web pages.

The User DataBase stores user related data, such as created queries and
templates, dashboards and comments. Data retrieved from the DataBase is
used to build web pages.

�gure 9.1 describes the web application architecture, and how the elements
are related. Each color describes a di�erent kind of interaction: red lines
indicate a recall of other resources inside the web application; blue lines
denotes a use of related Java classes to store and represent DataBase data;
green lines represents communications with components external to the web
application.

9.2.2 FDSMS bridge

The FDSMS bridge represents a connection layer with SCSQ, the FDSMS,
and it executes queries over it, returning their results back. It is a multithread
server that forwards requests to SCSQ and return results properly format-
ted in JSON. It also responsible for retrieving all the types and functions
declaired on SCSQ. The FDSMS bridge exposes a complete set of methods,
supporting previously described operations.

SCSQ is the backend where queries written in SCSQL are executed.

9.2.3 Architecture overview

Figure below summarizes how the system is composed:

9.3. WEB APPLICATION 115

It can be seen as a two tiers system, represented by two rectangles. The
left one represents the web application, containing the presentation layer
and data exchange, the web server and the User DataBase. The right block
represents instead the FDSMS bridge. Over each connecting line, the data
exchange format and the communication protocol (inside parenthesis) are
provided.

9.3 Web application

The web application, as already described, is composed of di�erent elements.
In this section, however, only the web server and the presentation layer are
deeply analyzed and illustrated, postponing the description of the remaining
elements in the following sections.

In particular, elements componing the user interface are presented, describing
their functionalities, and how they are implemented in code.

9.3.1 Visual Query Editor

The Visual Query Editor (VQE) is presented, is the main interface for the
Visual Queries creation. It collects and presents to the user all the elements

116 CHAPTER 9. PROTOTYPE

from the FDSMS, and it assists the Query composition with di�erent facili-
tations.

VQE components

The VQE (�gure 9.2) is composed of three main components: the Canvas,
the Elements Toolbox and the Toolbar.

Canvas The Canvas is used to create the Visual Query. Here elements are
added, can be removed, and can be connected, in order to compose the
�nal query. Elements can also be freely arranged on the canvas.

Elements Toolbox The Elements Toolbox (ET) contains all the VQL el-
ements which can be added to the Canvas, grouped by: Types, Func-
tions, Data Sources and Instructions. Each ET element is a button,
used to add the corresponding element to the Canvas. Types and Func-
tions are retrieved from SCSQ, so they represent all possible types and
functions declared in it. Functions are represented as tables (�gure 9.3),
where the header, in red, is the function name, white left-aligned rows
represent parameters' types, and blue right-aligned rows represent re-
sult's type. Types and Functions groups have also a �lter functionality,
which is presented later. The Data Sources group gather Objects repre-
senting sources from where data is collected. In �gure 9.4, for example,
�Mill A�, �Mill B� and so on, points to data streams originated from
sensors installed on milling machines. Finally, the Instructions group
contains the SCSQL statements, useful to compose the Visual Query.
Despite in �gure 9.5 are shown many di�erent statements, as explained
in chapter 7, only Select and Conditions are currently supported.

Toolbar The Toolbar is placed over the Canvas, and it contains two buttons:
�Set object value� and �Remove/Clear all elements� (see �gure 9.6).
The �Set object value� button is used to set a Value over an Object
(further details are provided below). The �Remove/Clear� button re-
moves an element or clear all the elements from the Canvas.

VQE interactions

This section explains how to interact with the VQE, and how it gives assis-
tance on composing a Visual Query.

9.3. WEB APPLICATION 117

Create Elements can be created using the ET. Each ET element is a button,
and clicking on it creates a new corresponding VQL element on the
Canvas.

Place Elements can be rearranged on the Canvas by drag and drop.

Change properties Element properties, like the DISTINCT clause for Se-
lect elements, can be changed by clicking on them (see �gure below).

Select/Deselect Clicking on an element selects it. Selected elements are
highlighted, with a lighter border, and remain highlighted even when
mouse leaves the element; they can then be removed or connected with
other elements through the Handle. As explained in details later, an
element selection activates corresponding ET �lters. Clicking again on
the element deselects it.

Remove Only selected elements can be removed. After selecting an element,
the Remove button on the Toolbar becomes enabled, and the selected
element can be removed from theCanvas by clicking on it. To remove a
connection, the connected parameter must be selected. The Canvas can
also be cleared from all elements by clicking on the dropdown placed
at the right side of Remove button, and selecting �Clear all elements�
(�gure 9.7).

Connect In order to connect an element with another one, �rstly it must
be selected, so the Handle becomes visible. The Handle is used to
connect the element by dragging it, and dropping it over the target
(see �gure 9.8). Not all of the elements can be connected each other;
table 9.1 summarizes permitted connections. When the target is a
Parameter, a previous Type check is performed: only if the Parameter
accepts the Handle Type, a connection is created. The target can also
be the Canvas; in this case, when the handle is dropped on it, a new
Object of the same Type is created.

Select and Condition Parameters Select and Conditions Parameters can
be added and removed at need, as explained in chapter 7.

118 CHAPTER 9. PROTOTYPE

Connectable elements

Object
Parameters which accept the same

Type

Function, Select, Conditions
Parameters which accept returned

Type

Parameters
Objects of accepted Type, and

Functions/Selects/Conditions which
return accepted Type

Table 9.1: Permitted connections.

Set object value Certain Types can have a Value, e.g. Charstring, Integer,
Number, Boolean, Time, Date, Timeval. Each of these Types have
associated an ad-hoc panel, used to set its Value; by now, only some
default Types are supported, but further panels can be added in future.
To set a value, �rstly the Object have to be selected. When an Object
is selected, the �Set object value� button in Toolbar becomes enabled,
and clicking on it, the associated panel is shown. After having speci�ed
the desired value, clicking on �Set value� sets it on the Object. Some
examples of panels are shown in the following �gure:

Composition facilities

During the query creation, the VQE supports the user with di�erent facilities,
in order to ease the composition.

9.3. WEB APPLICATION 119

As already mentioned, the Types and Functions groups in the ET present
�lters, which allow to easily �nd and use desired elements. These �lters
depends on the ET group.

Types have two di�erent kinds of �lters:

• Name contains: a string can be speci�ed, and only Types matching
that string are displayed.

• Accepted by [function or parameter]: selecting an element (Func-
tion/Select/Conditions), only Types accepted by selected element's Pa-
rameters will be shown.

Functions have four di�erent kinds of �lters:

• Name contains: a string can be speci�ed, and only Functions match-
ing that string are shown.

• Attributes of type [type]: only attributes of selected Object are
shown (an attribute is a Function which accepts only selected Object's
Type as parameter)..

• Accepts [type] as parameter: selecting an Object, only Functions
which have at least one Parameter which accepts selected Object's Type
are shown.

• Returns parameter(s) type(s) as result: when selecting a Func-
tion/Select/conditions or a Parameter, only elements which returns
accepted Type are shown.

Some �lters can be manually activated (�Name contains�, for example), oth-
ers are automatically activated when a VQL element is selected. These latter
are activated depending on the selected element itself. Following table sum-
marizes this behaviour:

120 CHAPTER 9. PROTOTYPE

Types Functions
Object - Functions whose

parameters accept
selected object type

Function, Select,
Conditions

Types accepted by
selected element

parameters

Functions which
accept returned type

as parameter,
Functions whose
parameters accept
returned type

Parameters Types accepted by
selected parameter

Functions which
return accepted type

Filters can be composed, so for example, selecting an Object, and specifying
a Function name (or only a piece of it), only functions accepting that Object
type and matching that string are shown.

Another facilitation is represented by tooltips over Parameters and the Han-
dle, used to indicate its Types; they are shown on mouse hover. Tooltips on
the Handle is always shown above it, while tooltips on Parameters are always
shown below them. An example is shown in the following �gure:

When trying to connect an Object with a Parameter, �rstly there will be a
Type compatibility check, and only if Types are compatibles the connection
is created. This check is performed when the Handle enters the target Pa-
rameter, and a visual representation of check result is shown: the Parameter
becomes red if Types are incompatible, green otherwise:

9.3. WEB APPLICATION 121

Finally, when selecting an element, connectable elements are highlighted in
green, therefore they can be easily found. �gure 9.9 shows an example where
an Integer Object is selected, and the second Parameter of THRESHOLD
Function is highlighted in green, showing that the Integer Object can be
connected with it.

Implementation

Each VQL element has a graphical representation on the Canvas and a
JavaScript object describing its attributes and methods. These objects have
the following common properties:

• type. It denotes the VQL element's type, can be �object�, �function�,
�select�, �conditions� or �parameter�.

• objectType. It is the FDSMS type associated with the element. For
Object elements, it represents the Object Type itself. For Function,
Select and Conditions, it represents the result's Type. For Parameters,
it represents the accepted Type.

• connections. An array of Connections created on the element.

• A set of graphical properties, used to draw the element itself on Canvas.

The elements also share some common methods:

• hightlight()/unhightlight(). These methods are used to emphasize se-
lected elements.

• serialize(). It creates a textual representation of the Visual Query,
which can then be saved on the User DataBase.

Depending from the element, other speci�c attributes or methods are pro-
vided, used, for instances, to set the Object Value or the DISTINCT property
for a Select element.

Each element is created by a speci�c function (createObject(), createFunc-
tion(), createSelect(), createConditions()), and each of these functions, after
creating the corresponding element, calls the setupElement() function which
sets common attributes and methods.

When an element is removed from the Canvas, the removeSelectedElement()
function is called, which operates di�erently based on selected element's type.
However, the main pattern is:

122 CHAPTER 9. PROTOTYPE

• remove connections from that element;

• remove the shape from the Canvas;

• remove the element from elements arrays.

The two latter points are not performed for Parameters.

If a click is performed over an element, �rstly there is a check to determine
if the click is a drag and drop or a click-and-release. Then, if veri�ed the
intention for a single click, there are three di�erent cases:

• no other elements were selected. The selectElement() function is
called which, from other things, creates the Handle for elements that
are not Parameters.

• Same element is clicked. This operation corresponds to unselect the
element. The unselectElement() function is called, which sets currently
selected element as unselected (removing the highlight from it), removes
the Handle if present, and removes the green highlight from connectable
elements.

• Another element was already selected. The function changeSe-
lectedElement() is called, which changes currently selected element with
the new one.

Connection of two elements starts by dragging the Handle. Every time the
Handle moves over the Canvas, all Parameters are checked in order to �nd if
the Handle hovers one of them:

dojo . connect (handle . moveable , "onMoved" , func t i on (mover ,
s h i f t) {
. . .
var handleBB = handle . body . getTransformedBoundingBox () ;
var handleX = handleBB [0] . x + (handleBB [1] . x − handleBB

[0] . x) / 2 ;
var handleY = handleBB [0] . y + (handleBB [3] . y − handleBB

[0] . y) / 2 ;
var parameterTargetFound = f a l s e ;
dojo . forEach (parameters , f unc t i on (parameter , i) {

var parameterBB = parameter . body .
getTransformedBoundingBox () ;

var parameterX = parameterBB [0] . x + (parameterBB
[1] . x − parameterBB [0] . x) / 2 ;

9.3. WEB APPLICATION 123

var parameterY = parameterBB [0] . y + (parameterBB
[3] . y − parameterBB [0] . y) / 2 ;

var distanceX = Math . pow(handleX − parameterX , 2) ;
var distanceY = Math . pow(handleY − parameterY , 2) ;
var d i s t anc e = Math . s q r t (distanceX + distanceY) ;

i f (d i s t anc e < parameterRadius +
parameterRadius

&& ! parameter . connected
&& parameter . e lement !== handle . element
&& (handle . e lement . type === " ob j e c t "

| | handle . e lement . type === " func t i on "
| | (handle . e lement . type === " s e l e c t "

&& parameter . e lement . type === " func t i on
")

| | (handle . e lement . type === " cond i t i on s "
&& parameter . e lement . type === "

cond i t i on s "))) {
parameterTargetFound = true ;

If a Parameter has been found, it is checked if it can be connected with the
selected one:

. . .
e l s e i f (parameterTargetFound) {

parameterTarget . conform (handle . objectType) ;
}
. . .
parameter . conform = func t i on (objectType) {

t h i s . conforming = true ;
. . .
t h i s . isConform = isSameTypeOrSubtype (objectType , t h i s .

objectType) ;
i f (t h i s . isConform) {

t h i s . body . s e t F i l l (greenDark) ;
} e l s e {

t h i s . body . s e t F i l l (redDark) ;
}

} ;

In order to connect an element with a Parameter, it has to accept the ele-
ment's SCSQ type. This can be checked by the function isSameTypeOrSub-
type():

f unc t i on isSameTypeOrSubtype (type , typeOrSubtype) {
// same SCSQ type

124 CHAPTER 9. PROTOTYPE

i f (type === typeOrSubtype) {
re turn true ;

}
// check i f type i s a subtype o f typeOrSubtype
f o r (var j = 0 ; j < al lTypes . l ength ; j++) {

i f (typeOrSubtype === al lTypes [j] . type) {
i f (dojo . indexOf (a l lTypes [j] . subtypes , type) >=

0) {
return true ;

}
}

}
re turn f a l s e ;

}

If target Parameter accepts selected element's SCSQ type, then they can be
connected when mouse is released. Connection is created by the function
createConnection():

f unc t i on createConnect ion (source , d e s t i n a t i on) {
// s t o r e connect ion p r op e r t i e s
var connect ion = new Object () ;
// add t h i s connect ion to array o f c r ea ted connect ions
connect i ons . push (connect ion) ;
. . .
source . connect i ons . push (connect ion) ;
d e s t i n a t i on . connect ion = connect ion ;
connect ion . source = source ;
connect ion . d e s t i n a t i on = de s t i n a t i on ;
. . .

}

It has two parameters, source and destination. Source can be an Object, a
Function, a Select or a Conditions element, destination is always a Parame-
ter. Moreover, the connection object is stored also in source and destination
objects representations, therefore the connection can be easily retrieved later.

Two arrays are adopted to store Types and Functions in the ET, respectively
allTypes and allFunctions.

Types are represented with JavaScript objects, which have two properties:

• type: the FDSMS type name;

• subtypes : an array of FDSMS types, subtypes of corresponding type.

9.3. WEB APPLICATION 125

Example of NUMBER FDSMS type: {type: "Number", subtypes: ["Real",
"Integer"]}.

Functions are represented with JavaScript objects, which have four proper-
ties:

• func: the Function name;

• description: what this Function does and/or how it operates;

• parameters : Function Parameters;

• results : returned Types.

Example of PLUS FDSMS function: {func: "plus", description: "sums two
numbers", parameters: ["Integer", "Integer"], results: ["Integer"]}.

When a �lter changes its state, corresponding elements are sifted, and only
elements corresponding to the activated �lters are shown. This is performed
by two functions: updateTypesFilter() for Types, and updateFunctionsFilter()
for Functions. These functions have a similar behaviour:

• clear the elements list;

• for each element, if it �ts the �lters and their options, then it is added
to the elements list.

As already said, there are �lters on Types and Functions. For each �lter
there is a JavaScript function in charge of verifying if an element �ts it or
no. Following, the list of these functions with their implementation details
(squared brackets represents selected item).

Filters for Types are:

• Name contains : only types containing given string are shown.

f unc t i on typeNameContains (type , t ex t) {
tex t = text . s p l i t (" ") ;
var re = " . ∗ " ;
f o r (var i = 0 ; i < text . l ength ; i++) {

var w = text [i] ;
r e += w + " . ∗ " ;

}
var typeName = type . type ;
r e turn typeName . match (new RegExp(re , " i ")) !== nu l l

;
}

126 CHAPTER 9. PROTOTYPE

• Accepted by [function] : when selecting a Function or a Parameter, only
accepted Types are shown.

f unc t i on isTypeAcceptedBySelectedElement (type) {
var accepted = f a l s e ;
i f (s e l ec tedElement . type === "parameter ") {

accepted = isSameTypeOrSubtype (type . type ,
se l ec tedElement . objectType) ;

} e l s e {
f o r (var k = 0 ; k < se l ec tedElement . parameters

. l ength ; k++) {
var parameter = se l ec tedElement . parameters [

k] ;
accepted = isSameTypeOrSubtype (type . type ,

parameter . objectType) ;
i f (accepted) {

break ;
}

}
}
re turn accepted ;

}

Filters for Functions are:

• Name or description contains : only Functions containing speci�ed string
are shown.

• Attributes of type [type] : only attributes of selected Object are shown
(an attribute is a function which accepts only selected object's type as
parameter).

f unc t i on i sFunct i onAtt r ibuteOfSe l e c t edObjec t (f) {
i f (f . parameters . l ength == 1) {

var type = se l ec tedElement . objectType ;
r e turn isSameTypeOrSubtype (type , f . parameters

[0]) ;
}
re turn f a l s e ;

}

9.3. WEB APPLICATION 127

• Accepts [type] as parameter : selecting an Object, only Functions which
have at least one Parameter which accepts selected Object's Type are
shown.

f unc t i on i sFunct ionAccept sSe l e c t edObjec t (f) {
var type = se l ec tedElement . objectType ;
var accepted = f a l s e ;
f o r (var k = 0 ; k < f . parameters . l ength ; k++) {

var parameter = f . parameters [k] ;
accepted = isSameTypeOrSubtype (type , parameter)

;
i f (accepted) {

break ;
}

}
re turn accepted ;

}

• Returns parameter(s) type(s) as result : when selecting a Function/Se-
lect/Conditions or a Parameter, only elements which returns accepted
Type are shown.

f unc t i on isReturnsTypeAcceptedBySelectedElement (f) {
i f (f . r e s u l t s . l ength == 0) {

return f a l s e ;
}
var type = f . r e s u l t s [0] ;
var accepted = f a l s e ;
i f (s e l ec tedElement . type === "parameter ") {

// check i f type i s accepted by s e l e c t e d
parameter

accepted = isSameTypeOrSubtype (type ,
se l ec tedElement . objectType) ;

} e l s e {
// check i f type i s accepted by at l e a s t one

parameter
f o r (var k = 0 ; k < se l ec tedElement . parameters

. l ength ; k++) {
var parameter = se l ec tedElement . parameters [

k] ;
accepted = isSameTypeOrSubtype (type ,

parameter . objectType) ;

128 CHAPTER 9. PROTOTYPE

i f (accepted) {
break ;

}
}

}
re turn accepted ;

}

9.3.2 Data visualization

A Visual Query, as being a SELECT-FROM-WHERE query, returns back
results from its execution, depending on the query itself. The user has the
ability to choose how to visualize these results, to better exploit the infor-
mation potential of these data.

The number of results, and the Type of each of them, is related to the Func-
tions connected to the Select element (or, as said in other words, on results
returned from the SELECT statement). In �gure 9.10, the composed Visual
Query returns two results, and in particular two Numbers. These results
may come, for example, from a query like SELECT POWER(�SENSOR
1A�) FROM �MILLING MACHINE C� WHERE ..., which returns power
consumption measured on a certain sensor located on a certain machine; the
function POWER(�...�), in this example, returns a stream of tuples composed
of two values: power (result 2) and corresponding time stamp (result 1).

Each of these results can be associated with a visualization through the prop-
erties described later. Taking back the example, as shown in �gure below,
the user has chosen to visualize these results with a line chart, associating
result 1 (time stamp) with the X axis, and result 2 (power) with the Y axis,
both on the same data series.

The application provides di�erent kinds of visualizations to choose from:
lines, bars, points, gauges and semaphores. By now, a single visualization of
each type can be used, and is activated through a dedicated checkbox.

Each visualization has di�erent properties associated, depending on visu-
alization itself, but they all share some common ones. These properties
includes:

• Chart name: a visualization can have a meaningful name, describing
depicted data.

• Associated results: each activated visualization has assigned one or
more results to show up. How to assign results to visualizations depends

9.3. WEB APPLICATION 129

on visualization itself, so for example on lines, bars and point charts,
which are Cartesian charts, results are associated with axis and series,
while on gauges and semaphores are simple values.

• Threshold over/under: a threshold is useful to depict errors on data,
colouring in a di�erent way values which are above/below the threshold
(red, for example).

Lines, bars and points charts share some other properties:

• X and Y axis names: as for chart name, axis name can be used to label
data on each axis, even providing a measurement unit.

• Series: a series is a sequence of data points, typically measured at suc-
cessive time intervals. As series are associated with Cartesian charts,
each data point has an X and an Y value. Series can be added or
removed at will on each chart, and each one can have a di�erent mean-
ingful name.

• Stream: even gauges and semaphores can be used to show up data
streams, but when this property is activated on lines, bars and points
charts, they use a di�erent visualization speci�c for �owing values.

Gauges have some own properties, like:

• Units: displayed value can has a label which shows measurement unit.
This must be provided by the user.

• Min/Max: the user can choose the measurement scale at which data is
displayed. If this option is omitted, the gauge will scale automatically.

Following �gure shows how chosen properties are re�ected on the �nal visu-
alization:

130 CHAPTER 9. PROTOTYPE

9.3.3 Query execution

A Visual Query have to be translated into a textual query written in SC-
SQL language, in order to be executed on FDSMS and get results back. In
chapter 8 has been already presented how this is done from a mathematical
point of view, and this section explains how this is integrated with the user
interface.

The translation is automatically performed by the application, but it must
be manually activated by the user, before executing it. This can be done
by pressing on �Translate Visual to Textual Query� button. As already ex-
plained in chapter 8, the query must pass some correctness tests before being
translated; these tests include a check if all elements are connected, if the
query ends with a Select, and if there are closed loops composed of Functions
and Selects. Check errors appear in a red alert panel (as seen in �gure below)
with a description of the error, so that the user knows immediately what was
wrong; this way, the user is aided in recognizing errors made during query
composition.

9.3. WEB APPLICATION 131

If the visual query passes all tests, it is translated into a textual query, and
then it can be executed. The query is executed by clicking on the �Execute
query� button as shown in �gure 9.11.

Once the query is executed on the FDSMS, results are received and visualized
on chosen charts. Query execution can even be stopped, which means that
results are no more retrieved from the FDSMS bridge; query execution can
be then resumed, and new results are visualized. The system also o�ers the
possibility to specify how many items a time are shown from the results,
selecting the value in the �Get elements a time� �eld. Doing this, the user
has the opportunity to simulate tuple based sliding window.

Implementation

�gure 9.12 summarizes, with a sequence diagram, how the query transla-
tion and execution is done, and how di�erent resources are called and inter-
act. The FDSMSclient.java class maintains a data structure called dataPool,
where results returned from queries execution are stored. This data struc-
ture is a map, which associates each executed query with its results, therefore
they can be easily retrieved for visualization porposes. With this approach,
data received from streams can be retrieved with consecutives asynchronous
requests, without interfering with other operations. Furthermore, the data
structure can be concurrently accessed, and updated with new data while
other threads reads stored values.

The JavaScript code in query.js �le sends an executeQuery asychronous re-
quest to exec.jsp, on the web server, with the query to execute as parameter
(among other properties). Then, it starts a timer, which asks exec.jsp for
new query results every one second. Evey time new results are returned, they
are displayed through chosen visualizations, until the end-of-data attribute
is received.

132 CHAPTER 9. PROTOTYPE

// send query to execute to SCSQ se rv e r
r eque s t . get (" exec . j sp " , {

query : {
func : " executeQuery " ,
queryID : queryID ,
query : query ,
b u f f e r S i z e : b u f f e r S i z e

}
}) . then (func t i on () {

// s t a r t a timer , used to r e t r i e v e new r e s u l t s
// from s e rv e r every 1 second
queryDataRetr iev ing = s e t I n t e r v a l (f unc t i on () {

// r e t r i e v e new r e s u l t s from s e r v e r
r eque s t . get (" exec . j sp " , {

query : {
func : "getData " ,
queryID : queryID

} ,
handleAs : " j son "

}) . then (func t i on (data) {
// query execut ion ends
i f (data . hasNoMoreData) {

// stop t imer
c l e a r I n t e r v a l (queryDataRetr iev ing) ;
r e turn ;

}
i f (! execut ionStopped) {

// f o r each r e s u l t
f o r (var i = 0 ; i < data . l ength ; i++) {

var r e s u l t = data [i] ;
// i f an execut ion e r r o r occurs
i f (r e s u l t . e r r o r) {

// show i t
e r ro rPane l . innerHTML = r e s u l t . e r r o r

;
domClass . remove (errorPane l , " hide ")

;
r e turn ;

}
var r e s u l t s = r e s u l t . r e s u l t s ;
// d i sp l ay r e s u l t s based on
// chosen v i s u a l i z a t i o n s
i f (v i s u a l i z a t i o nCon f i g u r a t i o n . v i sL i n e s

9.3. WEB APPLICATION 133

)
. . .

i f (v i s u a l i z a t i o nCon f i g u r a t i o n . v i sBars)
. . .

i f (v i s u a l i z a t i o nCon f i g u r a t i o n . visMarks
)
. . .

i f (v i s u a l i z a t i o nCon f i g u r a t i o n . visGauge
)
. . .

i f (v i s u a l i z a t i o nCon f i g u r a t i o n .
visSemaph)
. . .

}
}

}) ;
} , 1000) ;

}) ;

exec.jsp, from its side, simply forwards these requests to the FDSMS client.
How the FDSMS client interacts with the FDSMS bridge to execute queries
is explained in section �9.4.

e l s e i f (f unc t i on . equa l s (" executeQuery ")) {
In t eg e r queryID = In t eg e r . pa r s e In t (r eque s t . getParameter

(" queryID ")) ;
S t r ing query = reques t . getParameter (" query ") ;
I n t eg e r bu f f e r S i z e = In t eg e r . pa r s e In t (r eque s t .

getParameter (" bu f f e r S i z e ")) ;

SCSQclient . executeQuery (queryID , query , b u f f e r S i z e) ;
}

e l s e i f (f unc t i on . equa l s (" getData ")) {
In t eg e r queryID = In t eg e r . pa r s e In t (r eque s t . getParameter

(" queryID ")) ;

out . p r i n t (SCSQclient . getQueryData (queryID)) ;
}

9.3.4 Dashboard

A dashboard is a collection of queries and their visualizations. As the name
suggests, its function is to aggregate di�erent queries' results, and display

134 CHAPTER 9. PROTOTYPE

them through associated visualizations, with a monitoring aim. In fact, one
of the main objectives of the Smart Vortex project is to facilitate data analysis
and supervision over time, and a dashboard is intended for this use.

As said, a dashboard is a collection of queries, which can be added or removed
at will. These queries are associated only to the dashboard on where they
are created, and the user can choose to create a new query from scratch,
meaning that the VQE will open with an empty Canvas, or to start from an
existing template or previously created query (see �gure below); these two
latter options are explained in details later.

When a query is added to a dashboard, it is displayed using its associated
visualization, and directly executed, so the visualization will show up its
results. �gure 9.13 shows a dashboard example where three di�erent queries
have been added to it, and executed in parallel. In this case, the aim of the
dashboard is to monitor power deviations from an expected value, measured
from di�erent sensors on di�erent machines.

A dashboard can also has a meaningful name, given by the user, explaining
its purpose and easing its �nding.

9.3.5 Saved queries

As said, each query can be associated to a single dashboard, and it cannot
be shared between di�erent dashboards. There are cases, though, where it
would be useful to have the same query visualized on di�erent dashboards, or
to have the same query visualized with di�erent parameters. In these cases,
an already composed query can be saved on a common query repository, by
a dedicated action of the VQE (see �gure below). Saved queries can then be
reused on other dashboards, as explained above.

9.3. WEB APPLICATION 135

9.3.6 Templates

Templates, as the name suggests, are particular kinds of query models, a
starting point for the creation of other queries. Templates cannot have any
visualization associated, and they cannot be executed. They still are Visual
Queries composed through the VQE, and can be used when new queries are
added to a dashboard, as seen above.

When the same query is going to be utilized on di�erent (or the same) dash-
boards, but with di�erent parameters, it would be useful to start from a
common template, previously created, and then instantiate each query with
proper values.

9.3.7 Comments

Users can comment on dashboards and queries, about everything concerning
them (�gure below). For example, a user can point out that a query has a
problem and should be changed, or can comment on queries results.

Even if the objectives of the Smart Vortex project for this year do not

136 CHAPTER 9. PROTOTYPE

comtemplate the collaboration between users, this feature has been intro-
duced anyway, and it will be improved in future researches.

9.3.8 Overall view

By now, each element composing the web application has been presented
and illustrated, giving an explanation about how to interact with each com-
ponent, and how they operate. This section gives an overview of the entire
application, showing how these elements are related.

The main view of the web application is the home page (�gure below). Here,
an overall view of all of the elements created by the user is given, in particular
the list of created dashboards, the list of queries saved on repository and
the list of created templates are presented. These elements are grouped by
typology, and each group is searchable, therefore a corresponding element
can be easily found. From here, new dashboards and new templates can be
created. Clicking on an element shows up further information about it, and
clicking on its name opens it up.

When clicking on a dashboard name, the corresponding dashboard is opened.
As already explained, a list of associated queries is presented, with their
visualizations. Dashboard name can be changed by clicking on it, and clicking
on each query name opens the VQE with the corresponding query. Even

9.4. FDSMS BRIDGE 137

when adding a new query to the dashboard opens the VQE, and which query
is opened depends on the corresponding selected action. For example, if
the action �Create new query from scratch� is selected, the VQE will open
with an empty Canvas, or, if the selected action is �Create new query from
template�, the user is prompted to choose which template to use, and then
the VQE will open with chosen template on Canvas.

When a query is edited, the user has the ability to modify the Visual Query
through the VQE (�gure 9.2), choose the results visualizations (�gure 9.10),
or execute it (�gure 9.11), all on the same page. This way, the working
�ow of a query creation is never broken, and the user can build the query
and choose its visualization incrementally, directly displaying results and
correcting possible issues.

The same approach is followed when the name of a query saved on repository,
from the home page, is clicked. The VQE will open with the corresponding
query shown on Canvas, and the user can modify the visualizations properties
or execute the query.

When editing a template however, as explained, only the Visual Query can be
modi�ed, therefore, when clicking on the template name from the home page,
only the VQE will open, without visualization options or the possibility to
execute the template (in fact, a template cannot be executed by de�nition).

9.4 FDSMS Bridge

The FDSMS Bridge is a stand-alone server, used to execute queries on SCSQ
and get results back. It is a multithread TCP server that forwards request to
SCSQ and returns results properly formatted in JSON. It is also responsible
for retrieving all types and functions declared in the SCSQ FDSMS, during
the web application user interface start up. The FDSMS Bridge can be
divided in two blocks: the FDSMS server and SCSQ.

138 CHAPTER 9. PROTOTYPE

SCSQ is the backend where queries written in SCSQL are executed; even
continuous queries can be executed. A Java wrapper over SCSQ is available,
and it exposes an API which allows to communicate with SCSQ from external
applications. The Java wrapper sends queries and commands as text strings
to SCSQ, and gets results back.

The FDSMS server is the real communication interface between the web
server and SCSQ. It creates a TCP server on its initialization, used to ex-
change messages with the web server. Each time a new request arrives from
the web server, a new execution thread is created, which opens a new con-
nection with SCSQ through the Java wrapper, executes the requested query,
and then returns results back, properly formatted in JSON format.

The web server sends requests formatted as simple text strings, and they
could be of two kinds: a request for query execution, or a request to retrieve
all of the types and functions declared on SCSQ.

9.4.1 Query execution

A query execution request is composed of di�erent phases, depicted in the
following �gure. When the executed query is a Continuous Query, the ex-
ecution result is a stream, retrieved from the web server in di�erent data
chunks. While new data is available, the web server continues to reclaim it,
until a noti�cation of query execution termination is provided.

9.4. FDSMS BRIDGE 139

The FDSMS client, from the web server, opens a TCP connection with the
FDSMS server, sends the query to execute, then wait for results. When
results arrive, they are stored in the dataPool, so the FDSMS client reads
them and sends them back to the web server.

// c r e a t e new c l i e n t socke t on l o c a l host
Socket socke t = new Socket (InetAddress . getLocalHost () ,

55555) ;
// output stream
PrintWriter os = new PrintWriter (socke t . getOutputStream () ,

t rue) ;
// input stream
BufferedReader i s = new BufferedReader (new

InputStreamReader (socket . getInputStream ())) ;
// wr i t e command on output stream
os . p r i n t l n (command . getName ()) ;
i f (command . getName () . equa l s (" query ")) {

140 CHAPTER 9. PROTOTYPE

os . p r i n t l n (command . getQuery ()) ;
os . p r i n t l n (command . g e tBu f f e r S i z e ()) ;

}
// wait f o r s e r v e r re sponse and read i t
S t r ing r e s u l t ;
do {

r e s u l t = i s . readLine () ;
i f (r e s u l t == nu l l) {

// no more r e s u l t s to read
SCSQclient . dataPool . get (command . getQueryId ()) .

noMoreData () ;
}
e l s e {

// read r e s u l t s from data pool
L i s t<Str ing> data = SCSQclient . dataPool . get (command

. getQueryId ()) . getData () ;
data . add (r e s u l t) ;

}
} whi l e (r e s u l t != nu l l) ;
// c l o s e socke t
os . c l o s e () ;
i s . c l o s e () ;
socke t . c l o s e () ;

The FDSMS server, from its side, has created the TCP server during startup,
and waits for requests from the web server.

// s t a r t TCP se rv e r
ServerSocket s e r v e r ;
t ry {

s e r v e r = new ServerSocket (55555) ;
} catch (IOException ex) {

System . e r r . p r i n t l n (" Server c r e a t i on e r r o r ") ;
ex . pr intStackTrace () ;
r e turn ;

}
// i n i t i a l i z e SCSQ c l i e n t connect ion
try {

Connection . i n i t i a l i z e C l i e n t () ;
} catch (AmosException e) {

System . out . p r i n t l n ("Cannot i n i t i a l i z e connect ion with
SCSQ") ;

e . pr intStackTrace () ;
r e turn ;

9.4. FDSMS BRIDGE 141

}
// p e r s i s t e n t connect ion
whi l e (t rue) {

// accept new c l i e n t connect ion
Socket socke t ;
t ry {

socke t = s e r v e r . accept () ;
new ServerConnect ion (socke t) . s t a r t () ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
}

When a new request arrives, a new execution thread is created, and the
connection accepted. The �query� message sent from the client means that it
wants to execute a query, subsequently written on the communication pipe,
and followed by the bu�er size used to retrieve the results. A new connection
with SCSQ is created, the query executed, and results read, one tuple a time.
Every tuple is converted in a JSON format, and then sent back to the client.

// connect ion output stream
PrintWriter os = new PrintWriter (socke t . getOutputStream () ,

t rue) ;
// connect ion input stream
BufferedReader i s = new BufferedReader (new

InputStreamReader (socket . getInputStream ())) ;
// read reque s t type from c l i e n t
S t r ing requestType = i s . readLine () ;

. . .

// execute query
i f (requestType . equa l s (" query ")) {

// read query to execute from c l i e n t
S t r ing query = i s . readLine () ;
// read bu f f e r s i z e
S t r ing bu f f e r S i z e = i s . readLine () ;
// new SCSQ connect ion
Connection conn = nu l l ;
t ry {

conn = new Connection (" a ") ;
} catch (AmosException e) {

System . out . p r i n t l n (" Error on connect ing to SCSQ") ;
e . pr intStackTrace () ;

142 CHAPTER 9. PROTOTYPE

r e turn ;
}
// execute query with g iven bu f f e r s i z e
Scan scan = conn . executeCustom (query , " (: b u f f e r s i z e " +

bu f f e r S i z e + ") ") ;
// f o r each r e s u l t
whi l e (! scan . eos ()) {

// get tup l e
Tuple tup l e = scan . getRow () ;
// JSON rep r e s en t a t i on o f r e s u l t s
JSONObject r e su l tJ sonObjec t = new JSONObject () ;
JSONArray valuesJsonArray = new JSONArray () ;
f o r (i n t i = 0 ; i < tup l e . ge tAr i ty () ; i++) {

valuesJsonArray . put (tup l e . getElem (i)) ;
}
r e su l tJ sonObjec t . put (" r e s u l t s " , valuesJsonArray) ;
// convert JSON rep r e s en t a t i on to s t r i n g and wr i t e

i t on
// output stream
os . p r i n t l n (r e su l tJ sonObjec t . t oS t r i ng ()) ;
// read next scan
scan . nextRow () ;

}
}

9.4.2 Types and functions retrieving

Since types and functions declared in SCSQ are used in the VQE to compose
Visual Queries, they must be retrieved from it, represented in an exchange-
able format, and then sent to the web application to be shown up. The task
of retrieving this data from SCSQ is complex and time expensive, therefore
an intermediate solution has been adopted. In fact, a batch script which re-
trieves all the types and functions, represents them with their information in
a JSON format, and stores this data in a proper �le, has been created. This
script can be run manually at need, and a proper DataBase dump, called
db_elements, is generated. This �le is then accessed whenever the client re-
quests the SCSQ elements: types and functions are read, and then sent back
to the client.

// connect ion output stream
PrintWriter os = new PrintWriter (socke t . getOutputStream () ,

t rue) ;

9.5. USER DATABASE 143

// connect ion input stream
BufferedReader i s = new BufferedReader (new

InputStreamReader (socket . getInputStream ())) ;
// read reque s t type from c l i e n t
S t r ing requestType = i s . readLine () ;

. . .

// get a l l types and func t i on s from DB
i f (requestType . equa l s (" retrieveDBData ")) {

// open db_elements f i l e
BufferedReader f i s = new BufferedReader (new Fi leReader

(" db_elements ")) ;
// read each l i n e from db_elements f i l e . . .
S t r ing l i n e ;
whi l e ((l i n e = f i s . readLine ()) != nu l l) {

// . . . and wr i t e i t on output stream
os . p r i n t l n (l i n e) ;

}
// c l o s e db_elements f i l e
f i s . c l o s e () ;

}

This way, the operation cost, in terms of time, is considerably reduced.

9.5 User DataBase

As already introduced, the User DataBase stores user related data, which is
used to build web pages, creating a di�erent evironement for each user.

The following �gure shows the DataBase schema, depicting how the DataBase
is structured. Basically, four tables are used to store corresponding entities:
dashboards, queries, templates and comments. Each entity has a unique
surrogate key, and a set of attributes describing it.

144 CHAPTER 9. PROTOTYPE

The DASHBOARD entity stores dashboards attributes, like TITLE (dash-
board name) and MODIFIED_ON (last modi�ed timestamp). It has from
0 to N associated queries (queries added to the dashboard), and from 0 to N
associated comments.

The TEMPLATE entity stores templates attributes, like TITLE (template
name), MODIFIED_ON (last modi�ed timestamp) and VISUAL_QUERY,
a textual representation of the Visual Query, therefore it can be restored on
the Canvas of the VQE. It also has from 0 to N associated comments.

The QUERY entity represents queries with their attributes: TITLE is the
displayed name of the query, MODIFIED_ON is a timestamp of the last
modi�ed moment, VISUAL_QUERY and TEXT_QUERY are, respectively,
a textual representation of the Visual Query, and the textual SCSQL query
translation. Other attributes, like the ones starting with VIS_ or TH_
represents visualization properties, so for example which kind of graph has
been chosen to display query results, or if a chart shows up a threshold on
it. The ON_REPO attribute stores a Boolean value, TRUE when the query

9.5. USER DATABASE 145

has been saved on the queries repository. A query has from 0 to N associated
comments.

The COMMENT entity represents comments associated with other entities,
and their attributes, like the OWNER of the comment (the name of the user
who wrote the comment), the TEXT (what the user has written), and the
ID of the associated entity. Since a comment can be associated with only one
entity, this is a mutually exclusive value, therefore, if for example a comment
is associated with a dashboard, the DASHBOARD_ID attribute will has a
positive value (the ID of the associated dashboard), while the other IDs will
have -1 as value.

146 CHAPTER 9. PROTOTYPE

Figure 9.1: Web application architecture.

9.5. USER DATABASE 147

Figure 9.2: The Visual Query Editor.

Figure 9.3: Functions representation inside the Elements Toolbox.

148 CHAPTER 9. PROTOTYPE

Figure 9.4: Data Sources group.

9.5. USER DATABASE 149

Figure 9.5: Instructions group.

Figure 9.6: The Toolbar.

Figure 9.7: "Clear all elements" Toolbar action.

150 CHAPTER 9. PROTOTYPE

Figure 9.8: The connection steps.

Figure 9.9: Connectable elements are highlighted in green.

Figure 9.10: Visualization customization.

9.5. USER DATABASE 151

Figure 9.11: Query execution.

Figure 9.12: Query translation and execution sequence diagram.

152 CHAPTER 9. PROTOTYPE

Figure 9.13: A dashboard example.

Part VI

Conclusions and Future Works

153

Chapter 10

Implemented requirements

section �4.2 presented an analysis of the di�erent ISPs and provided use cases,
thus identifying all the functionalities that the User Layer of the Smart Vortex
system needs to provide, detailed in a proper list. In such a list of functional-
ities, di�erent actors of the system (administrators vs. end-users/engineers)
have been considered, as well as di�erent categories of available functional-
ities, divided into querying data and visualizing data. Moreover, a kind of
�overall� use-case (called meta use case) has been de�ned, as a demonstration
of what has been envisioned as applicable to the User Layer.

During the 2nd year of the project, the design and realization of the com-
ponents of the User Layer has been carried out, and has been presented in
this thesis. In particular, the e�ort has been addressed in the de�nition of a
Visual Query Language over SCSQL, the adopted Query Language on Data
Streams, and in the development of a Visual Query Editor, to build Visual
Queries and to assist the user with graphical aids during this task. Another
task has been the implementation of a translation algorithm between Visual
Queries and textual queries written in the SCSQL language, and the design
of proper visualizations to display queries execution results.

The tool developed constitutes the �rst version of the prototype; so far, it
is available in �single-use mode� i.e., with no collaboration/sharing features.
The targeted environement is a web application.

Looking at the Smart Vortex Framework architecture (�gure 4.2), and in
regards to the Visual and Multimodal Query and Data Presentation macro-
component, the forementioned implemented components corresponds to:

• the GUI Container, composed of various visual query widgets used to
implement the VQE and the Query Repository where the user queries
are stored;

155

156 CHAPTER 10. IMPLEMENTED REQUIREMENTS

• the Query Manager, containing all the necessary logic to translate a
Visual Query into an SCSQL textual query.

The integration level with the other Smart Vortex components is still low,
in particular with the multimodal framework and with the rule and policy
framework.

The following tables summarize the list of requirements, as presented in sec-
tion �4.2, with their current status, highlighting the implemented ones. All
of the Query Functionalities have been implemented; in particular, require-
ment PCA-3_QF015 is ful�lled thanks to the �lter functionalities of the
VQE (9.3.1), PCA-3_QF014 is ful�lled by tooltips over Visual Query el-
ements, depicting associated Types, and graphic metaphors during the Pa-
rameter's Type check (9.3.1); check errors noti�cation ful�ll also requirement
PCA-3_QF016. Query execution results are displayed with a proper chart
(PCA-3_VF01, PCA-3_VF02 and PCA-3_VF03) or visualization, changed
at need, as for requirement PCA-3_VF08. A Dashboard (section 9.3.4) as a
set of queries is implemented, as for PCA-3_VF06_v2.

PCA-3 Visualization Functionalities (PCA-3_VF)

Requirement ID Requirement Title Current Status

PCA-3_VF01 Line Chart Visualization !

PCA-3_VF02 Histogram Visualization !

PCA-3_VF03 Bar Chart Visualization !

PCA-3_VF04_v2 Browse Data Source #

PCA-3_VF05 Zoom Visualization #

PCA-3_VF06_v2 Con�gure Dashboard !

PCA-3_VF07 Possible visualization styles #

PCA-3_VF08 Choice of visualization !

PCA-3_VF09 Annotate data views !

PCA-3_VF10 Visualize 3D model #

157

PCA-3 Query Functionalities (PCA-3_QF)

Requirement ID Requirement Title Current Status

PCA-3_QF01/02 SCSQL Visual Query Language !

PCA-3_QF03 Query Repository !

PCA-3_QF04_v2 Visual Query Editor !

PCA-3_QF05 Visual Spatial Query Operators !

PCA-3_QF06 Visual Time Query Operators !

PCA-3_QF07 Visual Logical Query Operators !

PCA-3_QF08 Visual Arithmetic Query Operators !

PCA-3_QF09 Visual Comparison Query Operators !

PCA-3_QF010 Create visual query template !

PCA-3_QF011 Edit/Modify visual queries/query templates !

PCA-3_QF012 Re�ne query and view update !

PCA-3_QF013 Facility of searching !

PCA-3_QF014 Graphics facility for query composition !

PCA-3_QF015 Functions �lter !

PCA-3_QF016 Assist the end user !

PCA-3_QF017 Di�erent modalities of query building !

PCA-3 Administrator Functionalities (PCA-3_AF)

Requirement ID Requirement Title Current Status

PCA-3_AF01 Create user #

PCA-3_AF02 Manage user #

PCA-3_AF03 Write new visual query !

158 CHAPTER 10. IMPLEMENTED REQUIREMENTS

Chapter 11

Considerations and limitations

Even if most of the required functionalities of this project phase have been im-
plemented, the designed VQL and the implemented prototype present some
limitations.

11.1 Visual Query Language

Currently, only SELECT-FROM-WHERE queries can be created through
the VQL, but this does not represent a serious restriction, as it provides the
ability to cover the most part of the needed queries. The VQL is not intended
as a data manipulation language, therefore Visual Queries regarding the in-
teraction with the DataBase schema, like type/object creation/removal/up-
dating, are not foreseen. However, other essential AmosQL constructs have
not been taken into consideration, comprehending:

• declaration of local variables, through commands SET and DECLARE;

• declaration of new functions, through the command CREATE FUNC-
TION <NAME>(<ARGS>) -> <QUERY>;

• procedural commands, like FOR...EACH, IF-THEN-ELSE,
WHILE(<ARGS>)...DO..., RETURN, and so on;

• Cursors, through commands OPEN, FETCH, CLOSE,

Additionally, some AmosQL types, like Vector, are not completely supported.
A Vector like {1,2,3} cannot be directly created using the Visual Query
Language constructs, but it can be reproduced using the statement vector-
ize(iota(1,3))). Indexes on Vectors are not available as well. In this case,

159

160 CHAPTER 11. CONSIDERATIONS AND LIMITATIONS

a possible workaround is to manually create a user function like vectorele-
ment(Vector v, Integer index)->Object (that given a Vector v and an Integer
index returns the object at the index position of the array), and use it through
the Visual Query Editor.

11.2 Query translation algorithm

The presented query translation algorithm has some limitations. By now, it
is intended for the translation of Visual Queries composed with the current
VQL version, therefore the other forementioned constructs are not supported.
However, the translation algorithm can be easily extended, in order to sup-
port constructs like functions declaration, procedural commands, and so on.

Performances of this algorithm are good for most of the queries, even because
composed queries are in general quite simple. The AmosQL user manual
suggests to decompose complex queries into simpler ones, by declaring for
example subfunctions (which are even reusable into other parts of the code).
Furthermore, current drawing capabilities of the VQE are limited, and Visual
Queries bigger than a certain size cannot be created.

Performances could be increased by using other intermediate data structures,
and thus generating a graph with double oriented arcs. This way, the graph
can be walked in both directions, speeding up some parts of the algorithm,
especially when searching for connected Conditions. On the other hand, this
approach would also increase the need of resources, and most important,
the complexity of the algorithm, and the code in general. The algorithm
proposed here is a balance between performances and complexity.

Nevertheless, some methods of graph optimization and graph traversal could
be adopted, in order to �nd faster translation algorithms.

11.3 Visual Query Editor

As already mentioned, The VQE Canvas has a �xed size, therefore the area
dedicated to Visual Queries composition is limited, and queries bigger than
a certain size cannot be drawn. Two solutions to this limitation would be a
pan and a zoom capability: the user would have, this way, a possibly in�nite
Canvas to build the queries, and to have an overall view of them.

A better representation for Types and Data Sources, in the Elements Tool-
box, should be adopted. For example, Types sould be organized and depicted
with their hierarchy, in order to have a faster recognition, and Data Sources

11.3. VISUAL QUERY EDITOR 161

should have at least a �lter functionality to search for Data Sources by lo-
cation; even better, Data Sources could be represented on a map, to better
exploit how to locate them.

The visualization choice, to display queries results, is now limited to a single
chart for each visualization's type. Having more charts of the same type on a
dashboard is useful in monitoring or analyzing scenarios, where di�erent data
streams from di�erent data sources are compared each other using the same
visualization. Futhermore, queries on dashboards cannot be rearranged by
now, and complex arrangements are not supported. Even this feature would
be useful in a monitoring scenario, to display, for instance, data streaming
from machines sensors, capturing anomalies or malfunctionings.

162 CHAPTER 11. CONSIDERATIONS AND LIMITATIONS

Chapter 12

Future Works

Since current prototype has been designed and implemented during year 2
of the Smart Vortex project cycle, year 3 is dedicated to further improve it.

A �rst e�ort will be on the implementation of requirements regarding the
functionalities that are still missing. In particular:

• Requirement PCA-3_VF04_v2. During year 3, the ability to dynami-
cally access data sources, data streams and related metadata (e.g., via
a repository associated with the FDSMS, that provides speci�c APIs
for accessing data sources, schemas, metadata, etc.) will be added. If
this information cannot be dynamically obtained, all data sources will
be hardcoded.

• Requirement PCA-3_VF05. For subsequent prototype versions, func-
tionalities that allow the user to establish �interactive sessions� with
the visualization obtained from a given query (e.g. overlapping of dif-
ferent visualization, tooltip on charts showing their current values etc.)
are envisioned. There will be also an investigation about the possibil-
ity to re�ne queries by acting directly on the data visualizations (e.g.,
exploiting the so called �semantic zooming� capabilities).

• PCA-3_VF10. An integration with the 3D visualization plugin, coming
from the ISP-1.1 scenario, is also planned.

• Expansion of the VQL to include AmosQL constructs lefted out, and
implementation of the newly introducted constructs in the translation
algorithm.

In addition to completely ful�l the list of individuated requirements, the de-
signing and implementation of the collaboration features, transitioning from

163

164 CHAPTER 12. FUTURE WORKS

the current �single-use mode� to a �multiple-use mode�, is planned. In paral-
lel, since in year 2 the main focus has been on developing a Web-based pro-
totype, a porting to mobile devices, through native applications, is planned.
The decision about which platforms to support (iOS, Android, both) will be
taken during Y3, also on the basis of users and project needs.

Year 3 will also be the project cycle where the extensive system validation
with real users is started. Interviews and real use tests will be prepared, and
di�erent kinds of users will be chosen, in order to �nd usability weaknesses.
An initial set of Key Performance Indicators (KPIs) [46] measures will be
calculated. This work will last for the entire duration of the project, with
the intent of validating each prototype release.

The detailed list of KPIs and their current status follows:

• E�ectiveness of usage and visualization � not yet measured.

• E�ectiveness related to resource consumption � not yet measured.

• User satisfaction � not yet measured.

• Conformity to existent standard (ISO9241-11) � ongoing, meaning that
the design of the software modules has been carried out according to
the best practices in Human-Computer Interaction, in order to be able,
in the next releases, to fully adhere to the standard.

Even if no tests have been already done, an initial methodology to use has
been de�ned. Users are actively involved throughout the whole software de-
velopment process. For the evaluation activities qualitative usability evalua-
tion methods like feature inspection, observation of users while they perform
di�erent tasks, cooperative evaluation and questionnaires (which will give
details about the user satisfaction) are to be used.

Concerning the number of people to interview during these tests, Robert Virzi
claimed that about 80% of the known usability problems could be discovered
with 5 testers. 3 testers would �nd the most severe problems [44]. Also
Nielsen and Landauer con�rmed that 5 users discover approx. 80% of us-
ability problems. With 3 testers they showed that 70% of usability problems
could be found [45]. In accordance to this result, several investigations will
be carried out, in order to discover usability problems and give improvement
recommendations to the developers.

This set of tests could be accomplished:

• Controlled Experiments � to be held in lab environment under con-
trolled conditions. Each partner could presents its own component,

165

explaining the functionalities and several speci�c details to other part-
ners. After that, users have to look carefully through the components,
test them, and provide comments about how to improve the prototype.

• Cooperative evaluation � done with expert users, completely aware
about the Smart Vortex project and the functionalities of the compo-
nents to test. These tests are designed to estimate the performance
of speci�c tasks (see KPIs) in order to gather useful data on usability
issues of the system.

• With external users - After the performance of the user tests with
expert users, another usability test with non-expert users will be ac-
complished. The purpose is to get a feedback on the user interface also
from users who are not familiar with the data stream topic.

Another area in need of further work is the communication technology be-
tween the web application and the FDSMS bridge, and between the web
server and the presentation layer. By now, as presented, a JSP-over-Tomcat
techonolgy has been used to retrieve queries results, exchanging data in a
textual format, with a pull approach (from client to server). This is not the
best approach, since the visualization of data streams demands for a push
technique, where data is sent from the server to the client, and not vice-versa.
This way, as soon as new results are available from a stream execution, they
are directly sent to the client, and visualized in (almost) real time. A possible
technology adopting this approach is CometD, which uses persistent HTTP
connections to communicate with a web client, in both directions.

Even the web application would take advantage of the introduction of this
technology. Since one of the objectives for year 3 is to implement a collab-
orative version of the prototype, typical complications of collaborative envi-
ronements will have to be taken into consideration. One of these issues is, for
example, the syncronization of shared resources. A tipical scenario could be a
dashboard shared between di�erent users, so they can monitor the same data
sources from di�erent access points; all of the visualized queries must receive
the same data on all of the shared dashboards, updated in real time, and if
a user operates a modi�cation on the dashboard (like adding or removing a
query visualization, or commenting on it), this must be propagated on the
other dashboards, so they re�ect this change. These complications could be
overtaken by adopting a push technique, where changes operated by a user
on a shared resource are sent to the other clients.

166 CHAPTER 12. FUTURE WORKS

Part VII

References

167

Bibliography

[1] Smart Vortex Document of Work. Scalable Semantic Product Data
Stream Management for Collaboration and Decision Making in Engi-
neering (2011)

[2] D.J.Abadi, D.Carney, U.Cetintemel, M.Cherniack, C.Convey, S.Lee,
M.Stonebraker, N.Tatbul, and S.Zdonik: Aurora: a new model and ar-
chitecture for data stream management, The VLDB Journal, 12(2):120-
139, 2003.

[3] A.Arasu, S.Babu, and J.Widom: The CQL Continuous Query Lan-
guage: Semantic Foundations and Query Execution. The VLDB Journal,
15(2):121-142, 2006.

[4] http://www.streambase.com/

[5] E.Zeitler and T.Risch: Massive scale-out of expensive continuous
queries, presented at 37th International Conference on Very Large
Databases, VLDB 2011, in Proceedings of the VLDB Endowment, Vol.
4, No. 11, 2011.

[6] E.Zeitler: Scalable Parallelization of Expensive Continuous Queries over
Massive Data Streams, Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology 836 ISSN 1651-
6214, ISBN 978-91-554-8095-0, Acta Universitatis Upsaliensis, 2011
(http://www.it.uu.se/research/group/udbl/Theses/ErikZeitlerPhD.pdf).

[7] T. Risch, and V. Josifovski: �Distributed Data Integration by Object-
Oriented Mediator Servers�, in Concurrency and Computation: Prac-
tice and Experience J. 13(11), John Wiley & Sons, September 2001, pp
933�953.

[8] Zeitler, E. 2011. Scalable Parallelization of Expensive Continuous
Queries over Massive Data Streams. Acta Universitatis Upsaliensis. Digi-
tal Comprehensive Summaries of Uppsala Dissertations from the Faculty

169

170 BIBLIOGRAPHY

of Science and Technology 836. 35 pp. Uppsala. ISBN 978-91-554-8095-0.

[9] http://www.it.uu.se/research/group/udbl/amos/doc/amos_users_guide.html

[10] E.Zeitler: SCSQ user's guide:, UDBL, Dept. Of Infor-
mation Technology, Uppsala University, 11 Aug. 2011,
http://www.it.uu.se/research/group/udbl/publ/scsql.pdf.

[11] M. Yen, R. Scammel. A Human Factors Experimental Comparison of
SQL and QBE. IEEE Transactions on Software Engineering Volume 19
Issue 4. (1993).

[12] Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, Carlo Batini. Vi-
sual Query Systems for Databases: A Survey. Journal of Visual Lan-
guages and Computing. (1997).

[13] M. Angelaccio, T. Catarci, G. Santucci. QBD*: A Graphical Query
Language with Recursion. IEEE Transactions on Software Engineering,
16, 1150-1163. (1990).

[14] Steven P. Reiss. A Visual Query Language for Software Visualization.
Proceedings of the IEEE 2002 Symposia on Human Centric Computing
Languages and Environments. (2002).

[15] Stavros Polyviou, Paraskevas Evripidou, George Samaras. Query by
Browsing: A Visual Query Language Based on the Relational Model
and the Desktop User Interface Paradigm. The 3rd Hellenic Symposium
on Data Management (2004).

[16] Antonio Massari, Stefano Pavani, Lorenzo Saladini, Panos K. Chrysan-
this. QBI: Query By Icons. In Proceedings of SIGMOD Conference
(1995).

[17] A.J. Morris, A.I. Abdelmoty, B.A. El-Geresy. Design and Implementa-
tion of a Visual Query Language for Spatial Databases. Proceedings 6th
Int. Working Conference on Advanced Visual Interfaces. (2002).

[18] Norman Murray, Norman Paton, Carole Goble. Kaleidoquery: a visual
query language for object DataBases. Working Conference on Advanced
Visual Interfaces - AVI , pp. 247-257. (1998).

[19] A.J. Morris, A.I. Abdelmoty, B.A. El-Geresy. Design and Implementa-
tion of a Visual Query Language for Spatial Databases. Proceedings 6th
Int. Working Conference on Advanced Visual Interfaces. (2002).

BIBLIOGRAPHY 171

[20] C.J. Kacmar, J.M. Carey. Assessing the Usability of Icons in User In-
terfaces. Behaviour and Information Technology, 10. (1991).

[21] Balkir, N.H. Ozsoyoglu, G. Ozsoyoglu, Z.M. A graphical query language:
VISUAL and its query processing. . Knowledge and Data Engineering,
IEEE Transactions. (2002).

[22] Albert N. Badre , Tiziana Catarci, Antonio Massari , Giuseppe Santucci.
Comparative Ease of Use of a Diagrammatic Vs. an Iconic Query Lan-
guage In Interfaces to Databases. Electronic Series Workshop in Com-
puting, Springer, pages 1-14. (1996).

[23] Card, S. K., Mackinlay, J., Shneiderman, B. 1999. Readings in Informa-
tion Visualization: Using Vision to Think. Morgan Kaufmann.

[24] Becker, R. A., Cleveland, W. S., Shyu, M.-J. 1996. The visual design
and control of trellis display. Journal of Computational and Graphical
Statistics 5(2): 123-155.

[25] Becker, R. A., Cleveland, W. S. 1987. Brushing scatterplots. Techno-
metrics 29(2): 127-142.

[26] Grossman, T., Balakrishnan, R. 2005. The bubble cursor: enhancing
target acquisition by dynamic resizing of the cursor's activation area.
Proceedings of the ACM Conference on Human Factors in Computing
Systems: 281-290; http://doi.acm.org/10.1145/1054972.1055012.

[27] Shneiderman, B. 1996. The eyes have it: a task by
data type taxonomy for information visualizations. Pro-
ceedings of the IEEE Symposium on Visual Languages;
http://portal.acm.org/citation.cfm?id=832277.834354.

[28] van Ham, F., Perer, A. 2009. Search, show context, expand on de-
mand: supporting large graph exploration with degree-of-interest. IEEE
Transactions on Visualization and Computer Graphics 15(6): 953-960;
http://dx.doi.org/10.1109/TVCG.2009.108.

[29] Bederson, B. B., Hollan, J. D. 1994. Pad++: a zooming graphical
interface for exploring alternate interface physics. Proceedings of the
ACM Symposium on User Interface Software and Technology: 17-26;
http://doi.acm.org/10.1145/192426.192435.

172 BIBLIOGRAPHY

[30] Zellweger, P. T., Mackinlay, J. D., Good, L., Ste�k, M., Baudisch, P.
2003. City lights: contextual views in minimal space. Extended Ab-
stracts of the ACM Conference on Human Factors in Computing Sys-
tems: 838-839; http://doi.acm.org/10.1145/765891.766022.

[31] Tufte, E. 1983. The Visual Display of Quantitative Information.
Cheshire, CT: Graphics Press.

[32] Riche, N. H., Lee, B., Plaisant, C. 2010. Understanding interactive
legends: a comparative evaluation with standard widgets. Computer
Graphics Forum 29(3): 1193-1202.

[33] http://www.lesscss.org/

[34] http://twitter.github.com/bootstrap/

[35] https://dojotoolkit.org

[36] http://jquery.com

[37] http://jqueryui.com/

[38] http://trentrichardson.com/examples/timepicker/

[39] http://www.highcharts.com/

[40] https://github.com/Mikhus/canv-gauge

[41] Report McKinsey & Company: Big Data: The next frontier for innova-
tion, competition, and productivity. (May 2011).

[42] H.U. Heidbrink et al.: D1.1 � Survey of users in Europe and Smart Vor-
tex usage scenarios and cooperation support. Smart Vortex Consortium,
2011.

[43] H.U. Heidbrink et al.: D1.2 � Requirement Analysis Report and Speci�-
cation of the Smart Vortex Assessment Framework. Smart Vortex Con-
sortium, 2011.

[44] R.A. Virzi. Re�ning the test phase of usability evaluation: How many
subjects is enough? Human Factors, 34:457�468, 1992.

[45] J. Nielsen. Usability Engineering. Academic Press, 1993.

[46] http://en.wikipedia.org/wiki/Performance_indicator

