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Agenda
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● Insights by Results
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Background

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms



Why Distributed Machine Learning?

5Background

Mutliple Sources Iterative AlgorithmsMapReduce



Because represents innovation … 
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Mutliple Sources Iterative Algorithms

SOLUTION

Massive DataFlow Engines



One of the goals - fairness

● give code open-source

● keep jobs reproducible

● make benchmark exhaustive

● … 

● model systems as same as possible
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Another Goal - include more and more systems
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My Goal - “OK, may I start with a couple of those?”



Apache Flink vs. Apache Spark 
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Apache Flink Apache Spark

THE GOAL - Benchmark on Performance and Scalability



Systems similarities - they are stacks  
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Systems similarities - they do batch and streaming  
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Apache Spark vs Apache Flink - differences
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streaming to 
Batch

batch to 
Streaming

we do batch

… 
and iterations, memory 

management,
user policies

… 



Peel Framework - The Benchmarking Software
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● submits config by dependency injection
● packages together by peel bundles

Pe
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Peel execution flow - the suite:run command
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SETUP SUITE



Peel 
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SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN

Peel execution flow - turn on systems



18Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN 

RUN

to next RUN

Peel execution flow - collect logs and run again

LOGS
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SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN 

RUN

TEARDOWN 
EXP

TEARDOWN 
SUITE

to next EXP

to next RUN

Peel execution flow - turn off systems

LOGS



shee - fast and furios peel data visualization tool 
https://github.com/spi-x-i/shee

● built on top of Python, Pandas and matplotlib

● APIs

○ node - level

○ cluster - level

● web UI
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Defining Experiments

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

https://gitlab.tubit.tu-berlin.de/andrea-spina/MLBenchmark 

https://gitlab.tubit.tu-berlin.de/andrea-spina/MLBenchmark
https://gitlab.tubit.tu-berlin.de/andrea-spina/MLBenchmark


The fairness constraint

● Apache Spark 1.6.2 - Apache Flink 1.0.3

● We want the same (as much as possible) ... 

○ data structures

○ pipeline for solvers

○ operators

○ configuration

○ parameters

○ environment

Guaranteed by Peel
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Experiments Overview - Four applications

27Defining Experiments

APPROACH
We want to cover many 
applications

ALGORITHM
Choosed by a Tradeoff 
between complexity and 
fairness

DATA GENERATION
Writing Data on-demand 
by Peel Framework

Regression
Supervised 

Learning
Not Supervised 

Learning
Recommendation 

System

Multiple Linear 
Regression

Support Vector 
Machine *

KMeans
Alternating Least 

Squares

Apache SystemML Apache Spark Apache Spark Apache Flink
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PREMISE

We always evaluate Training Phase Performance

Building the Experiment Pipeline - KMeans Example



ASSIGNMENT STEP
re-partition datapoints according to 
centroids

UPDATE STEP 
retrieve new centroids by 
datapoints location mean

KMEANS clustering
find new classes from 
unlabeled data by grouping

A
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Building the KMeans Pipeline - Studying



E.g. keeping smarter initial k centroids choice

● random

● KMeans ++

● KMeans ||

Building the KMeans Pipeline - Studying

1. Explore systems machine learning libraries

2. Do research!
ML

KMEANS ITERATION

What do we want to compare? What keeps Systems on Stress!

30Defining Experiments

INITIAL CENTROIDS



EXPERIMENT SCOPE

c0 id0 x0 x1 … xn-1

c1 id1 x0 x1 … xn-1

Dataset → Point vectors

Init centers → (id, vector)

We need to:
● model data
● operate on data

Building the KMeans Pipeline - Data Structures

We employed:
● Flink Vectors
● Spark Vectors

● Breeze Vectors
● Scala Arrays
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x0 x1 … xn-1

x0 x1 … xn-1

p0

p1

DATA

INIT CENTERS



EXPERIMENT SCOPE

Building the KMeans Pipeline - KMeans Iteration

INPUT

RDD/DataSet

CACHING

FLINK

SPARK
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RichMapFunction

Map Function

GroupBy
Reduce

ReduceByKey

Map Function
Aggregate by AVG

Broadcasting Function
Map Function

Aggregate by AVG

Broadcasting Function

ASSIGNMENT STEP UPDATE STEPDATA

INIT CENTERS



EXPERIMENT SCOPE

Building the KMeans Pipeline - Materializing

INPUT

RDD/DataSet

CACHING

KMEANS 
ITERATIONS MODEL

Model → final centers
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DATA

INIT CENTERS



EXPERIMENT SCOPE

Building the KMeans Pipeline - Validation

INPUT

RDD/DataSet

CACHING

KMEANS 
ITERATIONS

OUTPUT
MODEL

Evaluation 
Metrics

Model Evaluation
● fairness first
● convergence of metrics
● good-enough model then

34Defining Experiments

DATA

INIT CENTERS



Benchmarking and Results Analysis

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms



Some general insights

3636Benchmarking and Results Analysis

CLUSTERS

2
WALLY
nodes 30 CPUs/node 8
RAM/node 16GB Storage/no. 3x1TB
Eth 1Gbit

CLOUD-11
nodes 25 CPUs/node 16
RAM/node 32GB Storage/no. 2x1TB
Eth 1Gbit

96 104

TOTAL RUNTIME [h]

200
DATASETS

28
AVERAGE SIZE

275GB
TUNING

FLINK 22% 
SPARK 30%

EVALUATIONS
strong scale
weak scale
data scale



Spark versus Flink Summary

aaaaaaaaRUNTIME WINS34 8

Multiple Linear Regression Support Vector Machine

NOT COMPARABLE

Reccomendation System

๏ Spark 63% outperforms Flink

๏ Flink 74% faster on critic resources

๏ FlinkML provides better runtimes

๏ Spark 71% outperforms Flink

๏ Flink likes MORE Data

๏ Good Scalability Behavior

Spark v Flink

KMeans

๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources

8 - 1
Spark v Flink

16 - 0

Spark v Flink

10 - 7

3737Benchmarking and Results Analysis



aaaaaaaaRUNTIME WINS34 8

Multiple Linear Regression Support Vector Machine

Alternating Least Squares
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๏ Flink 74% faster on critic resources

๏ FlinkML provides better runtimes
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๏ Good Scalability Behavior
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KMeans
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๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources



KMeans strong scale and scale data

● 12GB RAM per node
● 8 core CPU per node

● sparsity 0%
● model size 100 

3939Benchmarking and Results Analysis



Insights from Executions

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms



How should a large-scale processing engine work ?

41Insights from Executions

Flink KMeans
30 centroids
5 iterations

1TB data
30 nodes

12GB RAM / node 

CPU
user

DISK
read / write

NETWORK
send / recv



Like This KMeans Experiment! Step A 

A:

Building Execution Pipeline

Reading from Source

Map Points to Breeze

A
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Step B - The master sends partitions across the cluster

B:

Repartition Data

Cache Data and spill to Disk

First Iteration Execution

B
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Regular Iterations Frequency - Step C

C:

Next Iterations (2 to 5)

Read spilled data

Broadcast the model

Produce Sink (write to disk)

C

44Insights from Executions



How Spark outperforms Flink - #1 Repartitioning
SVM - 6 Nodes - 212GB Dataset - 5 iterations - 30 nodes - 12GB RAM / node
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#1 Repartitioning - Distributed-to-Distributed
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#1 Repartitioning - What Spark does
Narrow Transformation

GOAL - no data movements
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#1 Repartitioning - What Flink does
Narrow Transformation

GOAL - no data movements
Shuffling data between 

nodes
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#1 Repartitioning - Flink Network Overhead
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Additional Relevants

● #2 Caching Flink Issue - FLINK-1730
https://issues.apache.org/jira/browse/FLINK-1730 

○ Spark - user-defined caching returns faster intra-iteration timing

○ Flink manages caching internally (Bulk Iterations) and it is slower when the data is not 

Big

● #3 Broadcasting  Flink Improvements Proposal - FLIP-5
https://cwiki.apache.org/confluence/display/FLINK/FLIP-5%3A+Only+send+data+to+each+taskmanager+once+for+br

oadcasts 

○ Flink Broadcast brings communication overhead

○ Anyway it was not critical to this benchmark

50Insights from Executions
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Conclusions

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms
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Main Considerations

● Currently Spark is the right choice for batch purposes
○ and now Spark 2.0 … 

● Flink was born to stream and is growing along streaming
○ need to find a tradeoff

● Flink put first robustness and availability
○ and it masters join, hashing, grouping

● Spark put first performance and efficiency



Thank You
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Peel Framework Deploy Flow
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Peel execution flow - the suite:run command
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SETUP SUITE



Peel 
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SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN

Peel execution flow - turn on systems
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SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN 

RUN

to next RUN

Peel execution flow - collect logs and run again

LOGS
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SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN 

RUN

TEARDOWN 
EXP

TEARDOWN 
SUITE

to next EXP

to next RUN

Peel execution flow - turn off systems

LOGS
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SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN 

RUN

TEARDOWN 
EXP

TEARDOWN 
SUITE

to next EXP

to next RUN

Peel execution flow - It enables context fairness

LOGS

1 5

3

2 4



The KMeans Theory
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Building the Experiment Pipeline - KMeans Example

ASSIGNMENT STEP
re-partition datapoints according to 
centroids

UPDATE STEP 
retrieve new centroids by 
datapoints location mean

KMEANS clustering
find new classes from 
unlabeled data by grouping

A
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64Bonus Slides

KMeans Workload Code



EXPERIMENT SCOPE

Building the KMeans Pipeline - Data Structures

DATA

INIT CENTERS

*  the project is developed in Scala
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@ForwardedFields(Array("*->_2"))
final class CommonSelectNearestCenter extends RichMapFunction[BDVector[Double], (Int, BDVector[Double], Long)] {
 private var centroids: Traversable[(Int, BDVector[Double])] = null

 /** reads centroids and indexing values from the broadcasted set **/
 override def open(parameters: Configuration): Unit = {
   centroids = getRuntimeContext.getBroadcastVariable[(Int, BDVector[Double])]("centroids").asScala
 }

 override def map(point: BDVector[Double]): (Int, BDVector[Double], Long) = {
   var minDistance: Double = Double.MaxValue
   var closestCentroidId: Int = -1
   for ((idx, centroid) <- centroids) {
     val distance = squaredDistance(point, centroid)
     if (distance < minDistance) {
       minDistance = distance
       closestCentroidId = idx
     } }
   (closestCentroidId, point, 1L)
 } }

val finalCentroids: DataSet[(Int, BDVector[Double])] = centroids.iterate(iterations) { currentCentroids =>
 val newCentroids = points.map(new CommonSelectNearestCenter).withBroadcastSet(currentCentroids, "centroids")
/** … **/

KMeans Iteration #1
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while(iterations < maxIterations) {

 val bcCentroids = data.context.broadcast(currentCentroids)

 val newCentroids: RDD[(Int, (BDVector[Double], Long))] = data.map (point => {
   var minDistance: Double = Double.MaxValue
   var closestCentroidId: Int = -1
   val centers = bcCentroids.value

   centers.foreach(c => { // c = (idx, centroid)
   val distance = squaredDistance(point, c._2)
     if (distance < minDistance) {
       minDistance = distance
       closestCentroidId = c._1
     }
   })

   (closestCentroidId, (point, 1L))
 })

/** … **/

KMeans Iteration #1
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val finalCentroids: DataSet[(Int, BDVector[Double])] = centroids.iterate(iterations) { currentCentroids =>
 val newCentroids = points
   .map(new CommonSelectNearestCenter).withBroadcastSet(currentCentroids, "centroids")
   .groupBy(0)
   .reduce((p1, p2) => {
     (p1._1, p1._2 + p2._2, p1._3 + p2._3)}).withForwardedFields("_1")

/** … **/
(closestCentroidId, (point, 1L))
}).reduceByKey(mergeContribs)

type WeightedPoint = (BDVector[Double], Long)
def mergeContribs(x: WeightedPoint, y: WeightedPoint): WeightedPoint = {
 (x._1 + y._1, x._2 + y._2)
}

KMeans Iteration #2
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currentCentroids = newCentroids
 .map(x => {
   val (center, count) = x._2
   val avgCenter = center / count.toDouble
   (x._1, avgCenter)
 }).collect()

iterations += 1

val avgNewCentroids = newCentroids
 .map(x => {
   val avgCenter = x._2 / x._3.toDouble
   (x._1, avgCenter)
 }).withForwardedFields("_1")

avgNewCentroids

KMeans Iteration #2
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When Experiment Definition Goes 
Wrong … 
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SVM and Gradient Descent: what we wanted to do

ORIGINAL IDEA → Gradient Descent + mini-batching

1. sampling not comparable → Custom and Common Sampler

2. mapPartitions over mini-batches

p
0

p
1

... p
n

shuffle indices 
and subset

local gd 
gradient

global 
gd 

update
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SVM and Gradient Descent: what we did

p
0

p
1

... p
n

shuffle indices 
and subset

local gd 
gradient

global 
gd 

update

ISSUE

Spark not able to Run mapPartitions → OutOfMemory Exception  

→ to Batch Gradient Descent
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When Experiment Definition Goes 
Wrong … 
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The Supervised Learning Framework



Other Results
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Multiple Linear Regression Support Vector Machine

Alternating Least Squares

๏ Spark 63% outperforms Flink

๏ Flink 74% faster on critic resources

๏ FlinkML provides better runtimes

๏ Spark 71% outperforms Flink

๏ Flink likes MORE Data
Spark v Flink

NOT COMPARABLE

KMeans

8 - 1
Spark v Flink

16 - 0

Spark v Flink

10 - 7

Spark versus Flink Summary
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๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources



Multiple Linear Regression strong scale

CLOUD-11 (25nodes)

● 28GB RAM per node
● 16 core CPU per node

DATASET INFO

● no. datapoints 107

● model size 1000 
● data size 80GB
● sparsity 30%

ALGORITHM  INFO

● Iterations 100
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๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources



Support Vector Machine strong scale and weak scale

● 12GB RAM per node
● 8 core CPU per node

● sparsity 0%
● model size 1000 
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Future Developments 
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Future Improvements

● Complete not comparable benchmarking

● Redefine ALS benchmarking

● Add not Included Systems

● Improve shee and integrate it in peel framework
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