
Benchmarking Apache Flink and Apache Spark
DataFlow Systems on Large-Scale Distributed

Machine Learning Algorithms

Candidate Andrea Spina

Dipartimento di Ingegneria “Enzo Ferrari” - Laurea Magistrale di Ingegneria Informatica - MODENA

Advisor Prof. Sonia Bergamaschi
Co-Advisor Dr. Tilmann Rabl
Co-Advisor Christoph Boden

Where, When, How and Why

● Berlin, DE

● 5 months Traineeship - MAY - OCT ‘16

● Database Systems and Information Management Group,
Technische Universität

● Team Project - Systems Performance Research Unit

2

Agenda

● Background

● Experiments Definition

● Benchmarking and Results Analysis

● Insights by Results

3Agenda

Background

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

Why Distributed Machine Learning?

5Background

Mutliple Sources Iterative AlgorithmsMapReduce

Because represents innovation …

6Background

Mutliple Sources Iterative Algorithms

SOLUTION

Massive DataFlow Engines

One of the goals - fairness

● give code open-source

● keep jobs reproducible

● make benchmark exhaustive

● …

● model systems as same as possible

7Background

Another Goal - include more and more systems

8Background

9Background

My Goal - “OK, may I start with a couple of those?”

Apache Flink vs. Apache Spark

10Background

Apache Flink Apache Spark

THE GOAL - Benchmark on Performance and Scalability

Systems similarities - they are stacks

11Background

12Background

Systems similarities - they do batch and streaming

JAVA SCALA PYTHON

PYTHON

JAVA

R

SCALA

13Background

Systems similarities - they do batch and streaming

JAVA SCALA PYTHON

PYTHON

JAVA

R

SCALA

Apache Spark vs Apache Flink - differences

14Background

streaming to
Batch

batch to
Streaming

we do batch

…
and iterations, memory

management,
user policies

…

Peel Framework - The Benchmarking Software

15Background

● submits config by dependency injection
● packages together by peel bundles

Pe
el

Ex
p

er
im

en
t

Peel execution flow - the suite:run command

16Background

SETUP SUITE

Peel

17Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN

Peel execution flow - turn on systems

18Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN

RUN

to next RUN

Peel execution flow - collect logs and run again

LOGS

19Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN

RUN

TEARDOWN
EXP

TEARDOWN
SUITE

to next EXP

to next RUN

Peel execution flow - turn off systems

LOGS

shee - fast and furios peel data visualization tool
https://github.com/spi-x-i/shee

● built on top of Python, Pandas and matplotlib

● APIs

○ node - level

○ cluster - level

● web UI

20Background

https://github.com/spi-x-i/shee
https://github.com/spi-x-i/shee

shee - fast and furios peel data visualization tool
https://github.com/spi-x-i/shee

● built on top of Python, Pandas and matplotlib

● APIs

○ node - level

○ cluster - level

● web UI

21Background

https://github.com/spi-x-i/shee
https://github.com/spi-x-i/shee

shee - fast and furios peel data visualization tool
https://github.com/spi-x-i/shee

● built on top of Python, Pandas and matplotlib

● APIs

○ node - level

○ cluster - level

● web UI

22Background

https://github.com/spi-x-i/shee
https://github.com/spi-x-i/shee

shee - fast and furios peel data visualization tool
https://github.com/spi-x-i/shee

● built on top of Python, Pandas and matplotlib

● APIs

○ node - level

○ cluster - level

● web UI

23Background

https://github.com/spi-x-i/shee
https://github.com/spi-x-i/shee

shee - fast and furios peel data visualization tool
https://github.com/spi-x-i/shee

● built on top of Python, Pandas and matplotlib

● APIs

○ node - level

○ cluster - level

● web UI

24Background

11 48 3 ContributorsForkCommitStar

https://github.com/spi-x-i/shee
https://github.com/spi-x-i/shee

Defining Experiments

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

https://gitlab.tubit.tu-berlin.de/andrea-spina/MLBenchmark

https://gitlab.tubit.tu-berlin.de/andrea-spina/MLBenchmark
https://gitlab.tubit.tu-berlin.de/andrea-spina/MLBenchmark

The fairness constraint

● Apache Spark 1.6.2 - Apache Flink 1.0.3

● We want the same (as much as possible) ...

○ data structures

○ pipeline for solvers

○ operators

○ configuration

○ parameters

○ environment

Guaranteed by Peel

26Defining Experiments

Experiments Overview - Four applications

27Defining Experiments

APPROACH
We want to cover many
applications

ALGORITHM
Choosed by a Tradeoff
between complexity and
fairness

DATA GENERATION
Writing Data on-demand
by Peel Framework

Regression
Supervised

Learning
Not Supervised

Learning
Recommendation

System

Multiple Linear
Regression

Support Vector
Machine *

KMeans
Alternating Least

Squares

Apache SystemML Apache Spark Apache Spark Apache Flink

28Defining Experiments

PREMISE

We always evaluate Training Phase Performance

Building the Experiment Pipeline - KMeans Example

ASSIGNMENT STEP
re-partition datapoints according to
centroids

UPDATE STEP
retrieve new centroids by
datapoints location mean

KMEANS clustering
find new classes from
unlabeled data by grouping

A
SSIG

N
M

EN
T

U
P

D
A

TE

29Defining Experiments

Building the KMeans Pipeline - Studying

E.g. keeping smarter initial k centroids choice

● random

● KMeans ++

● KMeans ||

Building the KMeans Pipeline - Studying

1. Explore systems machine learning libraries

2. Do research!
ML

KMEANS ITERATION

What do we want to compare? What keeps Systems on Stress!

30Defining Experiments

INITIAL CENTROIDS

EXPERIMENT SCOPE

c0 id0 x0 x1 … xn-1

c1 id1 x0 x1 … xn-1

Dataset → Point vectors

Init centers → (id, vector)

We need to:
● model data
● operate on data

Building the KMeans Pipeline - Data Structures

We employed:
● Flink Vectors
● Spark Vectors

● Breeze Vectors
● Scala Arrays

31Defining Experiments

x0 x1 … xn-1

x0 x1 … xn-1

p0

p1

DATA

INIT CENTERS

EXPERIMENT SCOPE

Building the KMeans Pipeline - KMeans Iteration

INPUT

RDD/DataSet

CACHING

FLINK

SPARK

32Defining Experiments

RichMapFunction

Map Function

GroupBy
Reduce

ReduceByKey

Map Function
Aggregate by AVG

Broadcasting Function
Map Function

Aggregate by AVG

Broadcasting Function

ASSIGNMENT STEP UPDATE STEPDATA

INIT CENTERS

EXPERIMENT SCOPE

Building the KMeans Pipeline - Materializing

INPUT

RDD/DataSet

CACHING

KMEANS
ITERATIONS MODEL

Model → final centers

33Defining Experiments

DATA

INIT CENTERS

EXPERIMENT SCOPE

Building the KMeans Pipeline - Validation

INPUT

RDD/DataSet

CACHING

KMEANS
ITERATIONS

OUTPUT
MODEL

Evaluation
Metrics

Model Evaluation
● fairness first
● convergence of metrics
● good-enough model then

34Defining Experiments

DATA

INIT CENTERS

Benchmarking and Results Analysis

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

Some general insights

3636Benchmarking and Results Analysis

CLUSTERS

2
WALLY
nodes 30 CPUs/node 8
RAM/node 16GB Storage/no. 3x1TB
Eth 1Gbit

CLOUD-11
nodes 25 CPUs/node 16
RAM/node 32GB Storage/no. 2x1TB
Eth 1Gbit

96 104

TOTAL RUNTIME [h]

200
DATASETS

28
AVERAGE SIZE

275GB
TUNING

FLINK 22%
SPARK 30%

EVALUATIONS
strong scale
weak scale
data scale

Spark versus Flink Summary

aaaaaaaaRUNTIME WINS34 8

Multiple Linear Regression Support Vector Machine

NOT COMPARABLE

Reccomendation System

๏ Spark 63% outperforms Flink

๏ Flink 74% faster on critic resources

๏ FlinkML provides better runtimes

๏ Spark 71% outperforms Flink

๏ Flink likes MORE Data

๏ Good Scalability Behavior

Spark v Flink

KMeans

๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources

8 - 1
Spark v Flink

16 - 0

Spark v Flink

10 - 7

3737Benchmarking and Results Analysis

aaaaaaaaRUNTIME WINS34 8

Multiple Linear Regression Support Vector Machine

Alternating Least Squares

๏ Spark 63% outperforms Flink

๏ Flink 74% faster on critic resources

๏ FlinkML provides better runtimes

๏ Spark 71% outperforms Flink

๏ Flink likes MORE Data

๏ Good Scalability Behavior

Spark v Flink

NOT COMPARABLE

KMeans

8 - 1
Spark v Flink

16 - 0

Spark v Flink

10 - 7

Spark versus Flink Summary

3838Benchmarking and Results Analysis

๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources

KMeans strong scale and scale data

● 12GB RAM per node
● 8 core CPU per node

● sparsity 0%
● model size 100

3939Benchmarking and Results Analysis

Insights from Executions

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

How should a large-scale processing engine work ?

41Insights from Executions

Flink KMeans
30 centroids
5 iterations

1TB data
30 nodes

12GB RAM / node

CPU
user

DISK
read / write

NETWORK
send / recv

Like This KMeans Experiment! Step A

A:

Building Execution Pipeline

Reading from Source

Map Points to Breeze

A

42Insights from Executions

Step B - The master sends partitions across the cluster

B:

Repartition Data

Cache Data and spill to Disk

First Iteration Execution

B

43Insights from Executions

Regular Iterations Frequency - Step C

C:

Next Iterations (2 to 5)

Read spilled data

Broadcast the model

Produce Sink (write to disk)

C

44Insights from Executions

How Spark outperforms Flink - #1 Repartitioning
SVM - 6 Nodes - 212GB Dataset - 5 iterations - 30 nodes - 12GB RAM / node

45Insights from Executions

#1 Repartitioning - Distributed-to-Distributed

46Insights from Executions

#1 Repartitioning - What Spark does
Narrow Transformation

GOAL - no data movements

47Insights from Executions

#1 Repartitioning - What Flink does
Narrow Transformation

GOAL - no data movements
Shuffling data between

nodes

48Insights from Executions

#1 Repartitioning - Flink Network Overhead

49Insights from Executions

Additional Relevants

● #2 Caching Flink Issue - FLINK-1730
https://issues.apache.org/jira/browse/FLINK-1730

○ Spark - user-defined caching returns faster intra-iteration timing

○ Flink manages caching internally (Bulk Iterations) and it is slower when the data is not

Big

● #3 Broadcasting Flink Improvements Proposal - FLIP-5
https://cwiki.apache.org/confluence/display/FLINK/FLIP-5%3A+Only+send+data+to+each+taskmanager+once+for+br

oadcasts

○ Flink Broadcast brings communication overhead

○ Anyway it was not critical to this benchmark

50Insights from Executions

https://issues.apache.org/jira/browse/FLINK-1730
https://issues.apache.org/jira/browse/FLINK-1730
https://cwiki.apache.org/confluence/display/FLINK/FLIP-5%3A+Only+send+data+to+each+taskmanager+once+for+broadcasts
https://cwiki.apache.org/confluence/display/FLINK/FLIP-5%3A+Only+send+data+to+each+taskmanager+once+for+broadcasts
https://cwiki.apache.org/confluence/display/FLINK/FLIP-5%3A+Only+send+data+to+each+taskmanager+once+for+broadcasts

Conclusions

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

52Background

Main Considerations

● Currently Spark is the right choice for batch purposes
○ and now Spark 2.0 …

● Flink was born to stream and is growing along streaming
○ need to find a tradeoff

● Flink put first robustness and availability
○ and it masters join, hashing, grouping

● Spark put first performance and efficiency

Thank You

Media
● https://blog.websummit.net/berlin-the-startup-city-guide/ - background image - pag.2

● https://whatsthebigdata.com/2013/03/18/processing-big-data-the-google-way/ - background image - pag.4

● https://www.mapr.com/sites/default/files/blogimages/Spark-core-stack-DB.jpg - spark stack - pag.11

● https://flink.apache.org/img/flink-stack-frontpage.png - flink stack -pag.11

● http://www.hostingtalk.it/wp-content/uploads/2016/04/machine_learning.png - background image - pag. 28

● http://static.wixstatic.com/media/53defd_17c4b53bdda34dd89eed13867b9cc1aa~mv2.jpg - background image - pag.51

● http://www.trustsecurity.co.uk/admin/resources/monitoring-w680h300.jpg - background image - pag.61

54Media

https://blog.websummit.net/berlin-the-startup-city-guide/
https://blog.websummit.net/berlin-the-startup-city-guide/
https://whatsthebigdata.com/2013/03/18/processing-big-data-the-google-way/
https://whatsthebigdata.com/2013/03/18/processing-big-data-the-google-way/
https://www.mapr.com/sites/default/files/blogimages/Spark-core-stack-DB.jpg
https://www.mapr.com/sites/default/files/blogimages/Spark-core-stack-DB.jpg
https://flink.apache.org/img/flink-stack-frontpage.png
https://flink.apache.org/img/flink-stack-frontpage.png
http://www.hostingtalk.it/wp-content/uploads/2016/04/machine_learning.png
http://www.hostingtalk.it/wp-content/uploads/2016/04/machine_learning.png
http://static.wixstatic.com/media/53defd_17c4b53bdda34dd89eed13867b9cc1aa~mv2.jpg
http://static.wixstatic.com/media/53defd_17c4b53bdda34dd89eed13867b9cc1aa~mv2.jpg
http://www.trustsecurity.co.uk/admin/resources/monitoring-w680h300.jpg
http://www.trustsecurity.co.uk/admin/resources/monitoring-w680h300.jpg

55Bonus Slides

Peel Framework Deploy Flow

56Defining Experiments

Peel execution flow - the suite:run command

57Background

SETUP SUITE

Peel

58Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN

Peel execution flow - turn on systems

59Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN

RUN

to next RUN

Peel execution flow - collect logs and run again

LOGS

60Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN

RUN

TEARDOWN
EXP

TEARDOWN
SUITE

to next EXP

to next RUN

Peel execution flow - turn off systems

LOGS

61Background

SETUP SUITE

EXPERIMENT SCOPE

SETUP EXP

SETUP RUN EXECUTE RUN
TEARDOWN

RUN

TEARDOWN
EXP

TEARDOWN
SUITE

to next EXP

to next RUN

Peel execution flow - It enables context fairness

LOGS

1 5

3

2 4

The KMeans Theory

62Defining Experiments

Building the Experiment Pipeline - KMeans Example

ASSIGNMENT STEP
re-partition datapoints according to
centroids

UPDATE STEP
retrieve new centroids by
datapoints location mean

KMEANS clustering
find new classes from
unlabeled data by grouping

A
SSIG

N
M

EN
T

U
P

D
A

TE

63Defining Experiments

64Bonus Slides

KMeans Workload Code

EXPERIMENT SCOPE

Building the KMeans Pipeline - Data Structures

DATA

INIT CENTERS

* the project is developed in Scala

65Bonus Slides

@ForwardedFields(Array("*->_2"))
final class CommonSelectNearestCenter extends RichMapFunction[BDVector[Double], (Int, BDVector[Double], Long)] {
 private var centroids: Traversable[(Int, BDVector[Double])] = null

 /** reads centroids and indexing values from the broadcasted set **/
 override def open(parameters: Configuration): Unit = {
 centroids = getRuntimeContext.getBroadcastVariable[(Int, BDVector[Double])]("centroids").asScala
 }

 override def map(point: BDVector[Double]): (Int, BDVector[Double], Long) = {
 var minDistance: Double = Double.MaxValue
 var closestCentroidId: Int = -1
 for ((idx, centroid) <- centroids) {
 val distance = squaredDistance(point, centroid)
 if (distance < minDistance) {
 minDistance = distance
 closestCentroidId = idx
 } }
 (closestCentroidId, point, 1L)
 } }

val finalCentroids: DataSet[(Int, BDVector[Double])] = centroids.iterate(iterations) { currentCentroids =>
 val newCentroids = points.map(new CommonSelectNearestCenter).withBroadcastSet(currentCentroids, "centroids")
/** … **/

KMeans Iteration #1

66Bonus Slides

while(iterations < maxIterations) {

 val bcCentroids = data.context.broadcast(currentCentroids)

 val newCentroids: RDD[(Int, (BDVector[Double], Long))] = data.map (point => {
 var minDistance: Double = Double.MaxValue
 var closestCentroidId: Int = -1
 val centers = bcCentroids.value

 centers.foreach(c => { // c = (idx, centroid)
 val distance = squaredDistance(point, c._2)
 if (distance < minDistance) {
 minDistance = distance
 closestCentroidId = c._1
 }
 })

 (closestCentroidId, (point, 1L))
 })

/** … **/

KMeans Iteration #1

67Bonus Slides

val finalCentroids: DataSet[(Int, BDVector[Double])] = centroids.iterate(iterations) { currentCentroids =>
 val newCentroids = points
 .map(new CommonSelectNearestCenter).withBroadcastSet(currentCentroids, "centroids")
 .groupBy(0)
 .reduce((p1, p2) => {
 (p1._1, p1._2 + p2._2, p1._3 + p2._3)}).withForwardedFields("_1")

/** … **/
(closestCentroidId, (point, 1L))
}).reduceByKey(mergeContribs)

type WeightedPoint = (BDVector[Double], Long)
def mergeContribs(x: WeightedPoint, y: WeightedPoint): WeightedPoint = {
 (x._1 + y._1, x._2 + y._2)
}

KMeans Iteration #2

68Bonus Slides

currentCentroids = newCentroids
 .map(x => {
 val (center, count) = x._2
 val avgCenter = center / count.toDouble
 (x._1, avgCenter)
 }).collect()

iterations += 1

val avgNewCentroids = newCentroids
 .map(x => {
 val avgCenter = x._2 / x._3.toDouble
 (x._1, avgCenter)
 }).withForwardedFields("_1")

avgNewCentroids

KMeans Iteration #2

69Bonus Slides

When Experiment Definition Goes
Wrong …

70Defining Experiments

SVM and Gradient Descent: what we wanted to do

ORIGINAL IDEA → Gradient Descent + mini-batching

1. sampling not comparable → Custom and Common Sampler

2. mapPartitions over mini-batches

p
0

p
1

... p
n

shuffle indices
and subset

local gd
gradient

global
gd

update

71Defining Experiments

SVM and Gradient Descent: what we did

p
0

p
1

... p
n

shuffle indices
and subset

local gd
gradient

global
gd

update

ISSUE

Spark not able to Run mapPartitions → OutOfMemory Exception

→ to Batch Gradient Descent

72Defining Experiments

When Experiment Definition Goes
Wrong …

73Defining Experiments

74Defining Experiments

The Supervised Learning Framework

Other Results

75Defining Experiments

aaaaaaaaRUNTIME WINS34 8

Multiple Linear Regression Support Vector Machine

Alternating Least Squares

๏ Spark 63% outperforms Flink

๏ Flink 74% faster on critic resources

๏ FlinkML provides better runtimes

๏ Spark 71% outperforms Flink

๏ Flink likes MORE Data
Spark v Flink

NOT COMPARABLE

KMeans

8 - 1
Spark v Flink

16 - 0

Spark v Flink

10 - 7

Spark versus Flink Summary

7676Benchmarking and Results Analysis

๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources

Multiple Linear Regression strong scale

CLOUD-11 (25nodes)

● 28GB RAM per node
● 16 core CPU per node

DATASET INFO

● no. datapoints 107

● model size 1000
● data size 80GB
● sparsity 30%

ALGORITHM INFO

● Iterations 100

7777Benchmarking and Results Analysis

aaaaaaaaRUNTIME WINS34 8

Multiple Linear Regression Support Vector Machine

Alternating Least Squares

๏ Spark 63% outperforms Flink

๏ Flink 74% faster on critic resources

๏ FlinkML provides better runtimes

๏ Spark 71% outperforms Flink

๏ Flink likes MORE Data
Spark v Flink

NOT COMPARABLE

KMeans

8 - 1
Spark v Flink

16 - 0

Spark v Flink

10 - 7

Spark versus Flink Summary

7878Benchmarking and Results Analysis

๏ Similar Performance

๏ Flink definitely likes MORE data

๏ Flink 11% faster on critic resources

Support Vector Machine strong scale and weak scale

● 12GB RAM per node
● 8 core CPU per node

● sparsity 0%
● model size 1000

7979Benchmarking and Results Analysis

Future Developments

80Defining Experiments

Future Improvements

● Complete not comparable benchmarking

● Redefine ALS benchmarking

● Add not Included Systems

● Improve shee and integrate it in peel framework

81Bonus Slides

