

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

Advisor	Prof. Sonia Bergamaschi
Co-Advisor	Dr. Tilmann Rabl
Co-Advisor	Christoph Boden

Candidate Andrea Spina

Dipartimento di Ingegneria "Enzo Ferrari" - Laurea Magistrale di Ingegneria Informatica - MODENA

Where, When, How and Why

- Berlin, DE
- 5 months Traineeship MAY OCT '16
- Database Systems and Information Management Group, Technische Universität
- Team Project Systems Performance Research Unit

berlin

Agenda

- Background
- Experiments Definition
- Benchmarking and Results Analysis
- Insights by Results

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

5

Why Distributed Machine Learning?

Because represents innovation ...

SOLUTION

One of the goals - *fairness*

- give <u>code</u> open-source
- keep jobs reproducible
- make <u>benchmark</u> exhaustive

model <u>systems</u> as same as possible

Another Goal - include more and more systems

My Goal - "OK, may I start with a couple of those?"

Apache Flink vs. Apache Spark

THE GOAL - Benchmark on Performance and Scalability

Systems similarities - they are stacks

Systems similarities - they do batch and streaming

Systems similarities - they do batch and streaming

Apache Spark vs Apache Flink - differences

batch to Streaming

streaming to Batch and iterations, memory management, user policies

. . .

. . .

we do batch

Peel Framework - The Benchmarking Software

- submits config by *dependency injection*
- packages together by *peel* **bundles**

Peel execution flow - the suite:run command

SETUP SUITE

Peel execution flow - turn on systems

Peel execution flow - collect logs and run again

Peel execution flow - turn off systems

- built on top of Python, Pandas and matplotlib
- APIs
 - \circ node level
 - cluster level
- web UI

- built on top of Python, Pandas and matplotlib
- APIs
 - node level
 - \circ cluster level
- web UI

• built on top of Python, Pandas and matplotlib

APIs
node - level
cluster - level

• web UI

https://github.com/spi-x-i/shee

• built on top of Python, Pandas and matplotlib

• APIs

• node - level

cluster - level

• web UI

- built on top of Python, Pandas and matplotlib
- APIs
 - \circ node level
 - cluster level
- web UI

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

Defining Experiments

https://gitlab.tubit.tu-berlin.de/andrea-spina/MLBenchmark

The fairness constraint

- Apache Spark 1.6.2 Apache Flink 1.0.3
- We want the same (as much as possible) ...
 - data *structures*
 - *pipeline* for solvers
 - operators

- **parameters**
- environment

Guaranteed by Peel

Experiments Overview - Four applications

APPROACH We want to cover many applications	Regression	Supervised Learning	Not Supervised Learning	Recommendation System
ALGORITHM Choosed by a Tradeoff between complexity and fairness	Multiple Linear Regression	Support Vector Machine *	KMeans	Alternating Least Squares
DATA GENERATION Writing Data on-demand by Peel Framework	Apache SystemML	Apache Spark	Apache Spark	Apache Flink

Building the Experiment Pipeline - KMeans Example

PREMISE

We always evaluate Training Phase Performance

Defining Experiments

Building the KMeans Pipeline - Studying

KMEANS *clustering* find new classes from unlabeled data by grouping $C = \{c_1, c_2, \dots, c_k\}$ $X = \{x_1, x_2, \dots, x_n\}$

ASSIGNMENT STEP

re-partition datapoints according to centroids

UPDATE STEP

retrieve new centroids by datapoints location mean

Defining Experiments

Building the KMeans Pipeline - Studying

- 1. Explore systems machine learning libraries
- 2. Do research!
- E.g. keeping smarter initial k centroids choice
- random
- KMeans ++
- KMeans ||

What do we want to compare? What keeps Systems on Stress!

Spark

Building the KMeans Pipeline - Data Structures

DATA

Dataset \rightarrow Point vectors

Init centers \rightarrow (id, vector)

C ₀	id _o	x ₀	x ₁	 x _{n-1}
C ₁	id ₁	x ₀	x ₁	 x _{n-1}

We need to:

- model data
- operate on data

We employed:

- Flink Vectors
- Spark Vectors
- Breeze Vectors
- Scala Arrays

Defining Experiments

Building the KMeans Pipeline - KMeans Iteration

Building the KMeans Pipeline - Materializing

Defining Experiments

Building the KMeans Pipeline - Validation

Defining Experiments

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

6.3 🔺 0.1

Benchmarking and Results Analysis

Some general insights

Benchmarking and Results Analysis
Spark versus Flink Summary

RUNTIME WINS

8

Multiple Linear Regression		Support Vector Machine	
Spark v Flink 8 - 1	 Spark 63% outperforms Flink Flink 74% faster on critic resources FlinkML provides better runtimes 	Spark v Flink 16 - 0	 Spark 71% outperforms Flink Flink likes MORE Data Good Scalability Behavior
KMeans		Reccomendation System	
Spark v Flink 10 - 7	 Similar Performance Flink definitely likes MORE data Flink 11% faster on critic resources 	NOT COMPARABLE	

Benchmarking and Results Analysis

Spark versus Flink Summary

RUNTIME WINS

8

Multiple Linear Regression		Support Vector Machine	
Spark v Flink 8 - 1	 Spark 63% outperforms Flink Flink 74% faster on critic resources FlinkML provides better runtimes 	Spark v Flink 16 - 0	 Spark 71% outperforms Flink Flink likes MORE Data Good Scalability Behavior
KMeans		Alternating Least Squ	uares
Spark v Flink 10 - 7	 Similar Performance Flink definitely likes MORE data Flink 11% faster on critic resources 	NOT COMPARABLE	

Benchmarking and Results Analysis

KMeans strong scale and scale data

• **12GB** RAM per node

• sparsity **0%**

• 8 core CPU per node

• model size 100

Benchmarking and Results Analysis

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

How should a large-scale processing engine work ?

Step B - The master sends partitions across the cluster

Regular Iterations Frequency - Step C

How Spark outperforms Flink - #1 Repartitioning

SVM - 6 Nodes - 212GB Dataset - 5 iterations - 30 nodes - 12GB RAM / node

#1 Repartitioning - Distributed-to-Distributed

Apache Flink SVM 6 nodes Strong Scale

#1 Repartitioning - What Spark does

Apache Flink SVM 6 nodes Strong Scale

#1 Repartitioning - What Flink does

Apache Flink SVM 6 nodes Strong Scale

#1 Repartitioning - Flink Network Overhead

Additional Relevants

• **#2 Caching** Flink Issue - FLINK-1730

https://issues.apache.org/jira/browse/FLINK-1730

- Spark user-defined caching returns faster intra-iteration timing
- Flink manages caching internally (Bulk Iterations) and it is slower when the data is not
 Big

• #3 Broadcasting Flink Improvements Proposal - FLIP-5

https://cwiki.apache.org/confluence/display/FLINK/FLIP-5%3A+Only+send+data+to+each+taskmanager+once+for+br oadcasts

- Flink Broadcast brings communication overhead
- Anyway it was not critical to this benchmark

Benchmarking Apache Flink and Apache Spark DataFlow Systems on Large-Scale Distributed Machine Learning Algorithms

Main Considerations

- Currently Spark is the right choice for batch purposes
 and now Spark 2.0 ...
- Flink was *born to stream* and is **growing** along streaming
 - need to find a *tradeoff*
- Flink put first **robustness** and **availability**
 - and it masters *join, hashing, grouping*
- Spark put first **performance** and **efficiency**

Thank You

Media

- <u>https://blog.websummit.net/berlin-the-startup-city-guide/</u> background image pag.2
- <u>https://whatsthebigdata.com/2013/03/18/processing-big-data-the-google-way/</u> background image pag.4
- <u>https://www.mapr.com/sites/default/files/blogimages/Spark-core-stack-DB.jpg</u> spark stack pag.11
- <u>https://flink.apache.org/img/flink-stack-frontpage.png</u> flink stack -pag.11
- <u>http://www.hostingtalk.it/wp-content/uploads/2016/04/machine_learning.png</u> background image pag. 28
- <u>http://static.wixstatic.com/media/53defd_17c4b53bdda34dd89eed13867b9cc1aa~mv2.jpg</u> background image pag.51
- <u>http://www.trustsecurity.co.uk/admin/resources/monitoring-w680h300.jpg</u> background image pag.61

Peel Framework Deploy Flow

Defining Experiments

Peel execution flow - the suite:run command

SETUP SUITE

Peel execution flow - turn on systems

Peel execution flow - collect logs and run again

Background

Peel execution flow - turn off systems

Background

Peel execution flow - It enables context fairness

Background

The KMeans Theory

Defining Experiments

Building the Experiment Pipeline - KMeans Example

KMEANS *clustering* find new classes from unlabeled data by grouping $A \land C = \{c_1, c_2, \dots, c_k\}$ $\bullet X = \{x_1, x_2, \dots, x_n\}$

ASSIGNMENT STEP

re-partition datapoints according to centroids

retrieve new centroids by datapoints location mean

Defining Experiments

KMeans Workload Code

Building the KMeans Pipeline - Data Structures


```
@ForwardedFields(Array("*-> 2"))
```

final class CommonSelectNearestCenter extends RichMapFunction[BDVector[Double], (Int, BDVector[Double], Long)] { private var centroids: Traversable[(Int, BDVector[Double])] = null

```
/** reads centroids and indexing values from the broadcasted set **/
override def open(parameters: Configuration): Unit = {
 centroids = getRuntimeContext.getBroadcastVariable[(Int, BDVector[Double])]("centroids").asScala
```

```
override def map(point: BDVector[Double]): (Int, BDVector[Double], Long) = {
 var minDistance: Double = Double.MaxValue
 var closestCentroidId: Int = -1
 for ((idx, centroid) <- centroids) {</pre>
  val distance = squaredDistance(point, centroid)
  if (distance < minDistance) {
   minDistance = distance
   closestCentroidId = idx
  (closestCentroidId, point, 1L)
} }
```


KMeans Iteration #1

val finalCentroids: DataSet[(Int, BDVector[Double])] = centroids.iterate(iterations) { currentCentroids => val newCentroids = points.map(new CommonSelectNearestCenter).withBroadcastSet(currentCentroids, "centroids") /** ... **/

```
while(iterations < maxIterations) {</pre>
```

```
val bcCentroids = data.context.broadcast(currentCentroids)
```

```
val newCentroids: RDD[(Int, (BDVector[Double], Long))] = data.map (point => {
  var minDistance: Double = Double.MaxValue
  var closestCentroidId: Int = -1
  val centers = bcCentroids.value
```

```
centers.foreach(c => { // c = (idx, centroid)
val distance = squaredDistance(point, c._2)
if (distance < minDistance) {
    minDistance = distance
    closestCentroidId = c._1
    }
})
(closestCentroidId, (point, 1L))
})</pre>
```

```
/** ... **/
```

Bonus Slides

KMeans Iteration #1

Bonus Slides

```
val finalCentroids: DataSet[(Int, BDVector[Double])] = centroids.iterate(iterations) { currentCentroids =>
val newCentroids = points
.map(new CommonSelectNearestCenter).withBroadcastSet(currentCentroids, "centroids")
.groupBy(0)
```

.reduce((p1, p2) => { (p1. 1, p1. 2 + p2. 2, p1. 3 + p2. 3)}).withForwardedFields(" 1")

/** ... **/

```
(closestCentroidId, (point, 1L))
}).reduceByKey(mergeContribs)
```

type WeightedPoint = (BDVector[Double], Long)
def mergeContribs(x: WeightedPoint, y: WeightedPoint): WeightedPoint = {
 (x._1 + y._1, x._2 + y._2)
}

KMeans Iteration #2

KMeans Iteration #2

```
val avgNewCentroids = newCentroids
.map(x => {
  val avgCenter = x._2 / x._3.toDouble
  (x._1, avgCenter)
}).withForwardedFields("_1")
```

avgNewCentroids

currentCentroids = newCentroids .map(x => { val (center, count) = x._2 val avgCenter = center / count.toDouble (x._1, avgCenter) }).collect()

iterations += 1

When Experiment Definition Goes Wrong ...

Defining Experiments

SVM and Gradient Descent: what we wanted to do

ORIGINAL IDEA \rightarrow *Gradient Descent* + *mini-batching*

sampling not comparable → Custom and Common Sampler
 mapPartitions over mini-batches

Defining Experiments

SVM and Gradient Descent: what we did

ISSUE

Spark not able to Run mapPartitions → OutOfMemory Exception

When Experiment Definition Goes Wrong ...

The Supervised Learning Framework

Other Results

Spark versus Flink Summary

RUNTIME WINS

8

Multiple Linear Regression		Support Vector Machine	
Spark v Flink 8 - 1	 Spark 63% outperforms Flink Flink 74% faster on critic resources FlinkML provides better runtimes 	Spark v Flink 16 - 0	Spark 71% outperforms FlinkSpark 71% outperforms Flink
KMeans		Alternating Least Squares	
Spark v Flink 10 - 7	 Similar Performance Flink definitely likes MORE data Flink 11% faster on critic resources 	NOT	COMPARABLE

Benchmarking and Results Analysis

Multiple Linear Regression strong scale

16 core CPU per node

Benchmarking and Results Analysis

Spark versus Flink Summary

RUNTIME WINS 8

Multiple Linear Regression	Support Vector Machine	
 Spark 63% outperforms Flink Spark v Flink Flink 74% faster on critic resources FlinkML provides better runtimes 	Spark v Flink © Spark 71% outperforms Flink 16 - 0 Flink likes MORE Data	
KMeans	Alternating Least Squares	
 Similar Performance Spark v Flink Flink definitely likes MORE data Flink 11% faster on critic resources 	NOT COMPARABLE	

Benchmarking and Results Analysis

Support Vector Machine strong scale and weak scale

- 12GB RAM per node
- 8 core CPU per node

- sparsity **0%**
- model size **1000**

Benchmarking and Results Analysis

Future Developments

Future Improvements

- Complete not comparable benchmarking
- Redefine ALS benchmarking
- Add not Included Systems
- Improve *shee* and integrate it in *peel* framework