
A Non-intrusive Movie Recommendation System

Tania Farinella1, Sonia Bergamaschi2, and Laura Po2

1 vfree.tv GmbH,
Agnes-Pockels-Bogen 1

80992 München, Germany
{tania.farinella}@vfree.tv,

http://vfree.tv/
2 Department of Engineering “Enzo Ferrari”,

University of Modena and Reggio Emilia,
Via Vignolese 905, 41125 Modena, Italy

{sonia.bergamaschi,laura.po}@unimore.it

http://www.dbgroup.unimo.it

Abstract. Several recommendation systems have been developed to
support the user in choosing an interesting movie from multimedia repos-
itories. The widely utilized collaborative-filtering systems focus on the
analysis of user profiles or user ratings of the items. However, these sys-
tems decrease their performance at the start-up phase and due to privacy
issues, when a user hides most of his personal data. On the other hand,
content-based recommendation systems compare movie features to sug-
gest similar multimedia contents; these systems are based on less invasive
observations, however they find some difficulties to supply tailored sug-
gestions.
In this paper, we propose a plot-based recommendation system, which
is based upon an evaluation of similarity among the plot of a video that
was watched by the user and a large amount of plots that is stored in a
movie database. Since it is independent from the number of user ratings,
it is able to propose famous and beloved movies as well as old or unheard
movies/programs that are still strongly related to the content of the video
the user has watched.
We experimented different methodologies to compare natural language
descriptions of movies (plots) and evaluated the Latent Semantic Anal-
ysis (LSA) to be the superior one in supporting the selection of similar
plots. In order to increase the efficiency of LSA, different models have
been experimented and in the end, a recommendation system that is
able to compare about two hundred thousands movie plots in less than
a minute has been developed.

Keywords: Recommendation, Personalized Content, Movie, Latent Se-
mantic Analysis

1 Introduction

Nowadays movie repositories offer datasets of over 100000 items and their size
increases every year by around 5000 items due to the new released movies (ac-



cording to Screen Digest3). Searching for a movie of interest in such a large
amount of data is a time consuming task. Information filtering systems can be
a powerful tool in giving assistance to the user. Thus, particularly in a multime-
dia environment, they are implemented to minimize user effort, to increase user
satisfaction and to realize a more pleasant experience. For this purpose, recom-
mendation methodologies have been integrated into customized media content
distribution services. At the state of the art, the main methodologies analyze
user profiles and user ratings of the data items to compute item similarity. Con-
sequently, they find some difficulties from the start as user preferences are not
necessarily available for the system. Moreover these systems are quite intrusive
as they need active feed-back from users or their personal data. Content-based
recommendation systems, instead, utilize movie features (such as title, director,
year of production . . . ) and, combining similarity measurements, they define how
similar two movies are. While comparing movie features is quite easy, comparing
plots is a challenging task; to our knowledge, none of the movie recommendation
systems have proposed an algorithm based on the analysis of the plots till now.
Moreover, the aim of this work was to offer recommendations that also include
shows that are less popular or forgotten, because too old for example, but that
can still be interesting for the user.

In this paper we propose a plot-based recommendation system which is based
upon an evaluation of similarity among the plot of the movie that was watched by
the user and a large amount of movie plots that is stored in a movie database. We
exploit state-of-the-art text similarity techniques in order to evaluate similarity
of natural language features such as plots. Then, we combined similarity of plots
with similarity of non-verbose features, such as release year, crew etc. that are
computed by exact matching.

In order to compare natural language features a vector space model was de-
veloped following the approach used in an Information Retrieval environment [8].
Within the vector space model, each text is represented as a vector of keywords
with associated weights. These weights depend on the distribution of the key-
words in the given training set of plots that are stored in the database. In order
to calculate these weights we exploit and compare different techniques: simple
weighting technique and semantic weighting techniques.

Weighting techniques such as Term Frequency-Inverse Document Frequency
(tf-idf) and Log Entropy (log) assign a weight to each keyword that has been
extracted from a text using lemmatizers and taggers. The vectors that are gen-
erated have a large size, as each of them consists of as many elements as many
keywords have been extracted from the whole corpus of texts, and are very
sparse, as all the keywords that do not appear in a text are associated in the
corresponding vector to a zero-value element.

To generate small and non-sparse vectors (about 500 elements), the output
of the cited weighting techniques is refined by applying LSA [14]. LSA allows
to assign non-zero values to keywords that do not appear in a text but that
are still related to its contents. The strong correlation between LSA weights

3 http://www.screendigest.com/



and keyword co-occurrences allows to partially deal with synonymy (different
keywords having similar meanings) and polysemy (keywords assuming different
meanings).

The system has been developed in collaboration between the database group
of the University of Modena and Reggio Emilia and vfree.tv4, a young and in-
novative German company focused on creating new ways of distributing televi-
sion content and generating an unprecedented watching experience for the user.
Building upon several decades of experience of the founders in the fields of fixed
and mobile telecommunication, video processing and distribution, the company
is well equipped with a wealth of capabilities, indeed, in 2010 it won one of the
five main awards of the German Federal Ministry of Economics and Technology
for innovative new business ideas in the area of multimedia. Its products and
services introduce a unique and disruptive technology for individual distribution
of individual content. The user receives at any time the content which most likely
satisfies his current needs and wants. vfree.tv works with service providers and
content providers throughout Europe.

The paper is structured as follows. Section 2 introduces the structure of the
local movie database that has been created. Section 3 describes the vector space
model that has been used to compute similarity measures of natural language
descriptions as plots. Section 4 compares the results obtained by tf-idf and LSA
in selecting the 10 most similar movies to a given one. Moreover it examines the
performance of approximated LSA models. Section 5 presents some related work,
whereas conclusion and possible future evolvements are depicted in Section 6.

2 The Movie Database

With the aim of generating an extensive and reliable representation of multi-
media, video metadata can be imported from external repositories and stored
within a local database. Storing the data locally helps to improve the efficiency
of processes that lead to the recommendation results. The local database should
allow to easily enter data from different sources and perform queries on a huge
amount of data (thousands of movies) in a short time and get good results. For
these reasons we chose MongoDB.

MongoDB5 is a non relational database and is schema-free, this feature al-
lows to create databases with flexible and simple structure without decreasing
the time performance when they are queried. Data is organized into collections,
which correspond to tables in relational databases, and documents, the equiv-
alent of tuples. MongoDB documents, as well as tuples, consist of a set of at-
tributes, but since the database is schema-free the structure of each document
is independent and potentially different from the structure of all the other doc-
uments in the same collection. It is then possible to change the structure of a
document just modifying its attributes. MongoDB supports a query language

4 http://vfree.tv
5 http://www.mongodb.org/



that allows to define most of the queries that can be expressed in SQL. Further-
more, test demonstrated that for collection having a big size MongoDB shows
better query performances [28].

In order to structure the local database, an analysis on the major movie
repositories has been conducted. We took into consideration the Internet Movie
Database (IMDb)6, DBpedia7 and the Open Movie Database (TMDb)8. Infor-
mation about movies can be classified in either information that is related to
multimedia or information that is about people that participated in the produc-
tion of multimedia. This led to the creation of three main databases (as shown
in Figure 1). The Movie database comprises data that is solely related to mul-
timedia, such as title, plot and release year. The Person database comprises
data related to people (e.g. full name, biography and date of birth). The Cast-
ncrew database connects documents of the other two databases. It comprises
data about roles that are covered by people in the production of multimedia,
such as actor, director or producer. This configuration allows an easier adapta-
tion to integrate different/new datasets into the system, when external sources
are shut down or experience a change in their copyright. Information extracted
from different online resources can be stored separately as collections of the
databases. For example as both IMDb and DBpedia supply information about
movies and persons, they might potentially supply collections for all the three
databases. However, if we have a repository that manages information about ac-
tors only, we can store this information adding a new collection in the database
person. As MongoDB does not require a fixed schema, different collections in
the databases may store different attributes. On the other hand, if we want to
aggregate information about movies from different collections we connect infor-
mation from the databases based on the name of the actors, the title of a movie,
the year of production and other features if available.

Fig. 1. The local MongoDB database

6 http://www.imdb.com/
7 http://dbpedia.org/
8 http://www.themoviedb.org/



3 The Vector Space Model

The similarity of two media items depends on their features likeness. Hence,
for each feature, a specific metric is defined in order to compute a similarity
score. Most of the metrics that are adopted are calculated through only few
simple operations. Things are more difficult for plots and, in general, for natu-
ral language descriptions. Our approach, that follows the one developed in an
Information Retrieval environment [8], is based on a vector space model which
is used to compare any pair of plots. Within this model, each text is represented
as a vector of keywords with associated weights. These weights depend on the
distribution of the keywords in the given training set of plots that are stored in
the database. Vectors that represent plots are joined and consequently form a
matrix where each row corresponds to a plot and each column corresponds to a
keyword extracted from the training set descriptions. Thus, each cell of the ma-
trix represents the weight of a specific keyword according to a specific plot. The
weights in the matrix are determined in three steps. First, they are defined as the
occurrences of keywords in the descriptions; second, weights are modified by op-
tionally using the tf-idf or log technique (but other suitable weighting techniques
could be used as well); third, the matrix is transformed by performing Latent
Semantic Analysis (LSA) [12]. LSA is a theory and method for extracting and
representing the contextual-usage meaning of words by statistical computations
applied to a large corpus of text. Several experiments have demonstrated that
LSA has a good accuracy in simulating human judgments and behaviors [15].

3.1 Plot-based Similarity

Texts can be compared by using vector operations, such as the cosine similarity
that is used as a distance metric in order to compute the similarity score between
two texts, based on a vector representation.

Definition - cosine similarity Given two vectors vi, and vj, that represent
two different descriptions, the cosine angle between them can be calculated as
follows:

cosin(vi, vj) =

∑
k (vi[k] · vj [k])√∑

k vi[k]2 ·
√∑

k vj [k]2

The value of the cosine angle is a real number between −1 and 1. If the value
is “1” the two compared vectors are equivalent, whereas if the value is “-1” the
two vectors are opposite.

Thus, to compare descriptions by using vector operations plots need to be
converted into vectors of keywords. As a preliminary operation, before the first
step of our method, the keyword extraction and discrimination activity is per-
formed. Keywords correspond to terms within the text that are representative
of the text itself and that at the same time are discriminating. Less discrimina-
tive words, the so called stop words, are discarded and terms are preprocessed
and substituted in the vector by their lemmas, this operation is called lemma-
tization. The goal of lemmatization is to reduce inflectional forms of a word to



a common base form (e.g. to transfom “running”, “runs” in the corresponding
base form “run”). Lemmatization and keyword extraction are made by using
TreeTagger [25]. TreeTagger is a parser that has been developed at the Institute
for Computational Linguistics of the University of Stuttgart. This tool can an-
notate text with part-of-speech and lemma information in both the English and
German language.

Keywords that have been extracted from descriptions as well as their local
frequency (occurrences in the description) are stored as features of the media
item in the local database. This happens for two main reasons. First, compared
to the access to database values, the keyword extraction process is relatively
slow9. As the weighting techniques define the values of the weights on the basis
of the global distribution of the keywords over the whole corpus of descriptions,
it is necessary to generate all the vectors before applying the tf-idf/log technique.
Second, while tf-idf/log weights change when new multimedia descriptions are
entered into the system, the local keyword occurrences do not.

Two different techniques have been used for computing keyword weights. In
the following we briefly describe tf-idf technique, while we skip the definition of
log. For major details we remand to [24] for an explanation of tf-idf and [9]
for log. In both techniques, a weight that represents the relevance of a specific
keyword according to a specific text depends on the local distribution of the
keyword within the text as well as on the global distribution of the keyword in
the whole corpus of descriptions.

Definition - tf-idf weight Given a keyword k that has been extracted from
a text the tf-idf weight is calculated as follows:

weighttf−idf =
tf(k, d) · idf(k)√∑

j v[j]2

Where tf(k, d) corresponds to the frequency of the keyword k in the vector v and
idf(k) depends on the number N of vector descriptions in the corpus and on the
number df of vector descriptions in which the keyword k appears:

idf(k) = log2

N

df

tf-idf weights have a value between 0 and 1. Keywords with a document
frequency equal to one are discarded.

The keyword weights are then refined by the use of LSA.
Let us introduce this technique by an example, suppose we have the following

sentences “There is a mouse below the new Ferrari that is parked in front of the
market”, “With one mouse click you can view all available cars and thus renders
going to the shop unnecessary”. Now, let us compare the corresponding vectors
that have been generated by tf-idf and LSA on the above sentences:

9 One database access, using MongoDB, takes about 0.3 milliseconds while the ex-
traction of keywords from a plot takes more than one second.



Table 1. A comparison of the weight vector correspondences obtained by using tf-idf
and LSA

ferrari market mouse click car shop

tf-idf v1 0.67 0.38 0.48 0 0 0
v2 0 0 0.41 0.54 0.48 0.39

product 0 0 >0 0 0 0

LSA v1 0.67 0.38 0.48 0 >0 >0
v2 >0 >0 0.41 0.54 0.48 0.39

product >0 >0 >0 0 >0 >0

The analysis of the values in Table 1 shows tf-idf is not able to recognize
neither synonyms (e.g.market and shop) nor hyponyms (e.g. Ferrari and cars).
In contrast, the use of LSA emphasizes underlying semantic: in the first sentence
a value not equal to zero is assigned to the term car even if this keyword does not
appear in vector v1 (the vector that corresponds to the first sentence). This is due
to the co-occurrences of the term Ferrari and other terms that also frequently
occur in combination with the term car in other vectors of the training set matrix
on which the LSA has been applied. There is a strong correlation between the
values of the matrix and second order co-occurrences.

The LSA consists of a Singular Value Decomposition (SVD) of the vector
matrix T (Training set matrix) followed by a Rank lowering. Each row and
column of the resulting matrix T ′ can be represented as a vector combination of
the eigenvectors of the matrix T ′T ′T .

v =
∑
i

coefficienti · eigenvectori

Where the coefficients coefficienti of the above formula represent how strong
the relationship between a keyword (or a description) and a topic eigenvectori
is. The eigenvectors define the so-called topic space, thus, the coefficients related
to a vector v represent a topic vector. Each eigenvector is referred to in the
following as topic.

It is the topic representation of the keywords which is used as a natural
language model in order to compare texts. Topic vectors may be useful for three
main reasons: (1) as the number of topics that is equal to the number of non-zero
eigenvectors is usually significantly lower than the number of keywords, the topic
representation of the descriptions is more compact10; (2) the topic representation
of the keywords makes possible to add movies that have been released after the
definition of the matrix T ′ without recomputing the matrix T ′; (3) to find similar
movies starting from a given one, we just need to compute the topic vectors for
the plot of the movie and then compare these vectors with the ones we have
stored in the matrix T ′ finding the top relevant.

10 Thus, we store the matrix of description-topic vectors to represent the training set.



Note that adopting this model we are able to represent each plot with 500
topics, instead of 220000 keywords.

3.2 Feature-based Similarity

The similarity of plots can also be combined with the similarity of other features
such as directors, genre, producers, release year, cast etc. The similarity of two
media items (m1 and m2) is defined as a weighted linear combination of the
similarity of the feature values that describe the two items:

similarity(m1,m2) =

FN∑
i=1

weighti · similarityi(feature1,i, feature2,i)

Where FN is the number of features that describe a media item that has
been chosen to compute the media similarity, similarityi is the metric used
to compare the i-th feature, featurej,k is the value assumed by feature k in
the j-th media item. The result of each metric is normalized to obtain a value
between zero and one where one denotes equivalence of the values that have
been compared and zero means maximum dissimilarity of the values [7].

4 Tests

In order to perform an evaluation of the developed recommendation system, we
loaded data from IMDb for test purposes into the local database.

Table 2. A comparison between the tf-idf and log weighting techniques on the movie
“The Godfather”

tf-idf log

1. The Godfather 1. The Godfather
2. The Godfather Part II 2. The Godfather Part II
3. The Godfather Part III 3. Godfather Trilogy

4. The Godfather Saga 4. The Godfather Part III
5. Godfather Trilogy 5. Long Arm of the Godfather
6. The Rain People 6. Godfather

7. The Score 7. The Godfather Saga
8. Godfather 8. Mumbai Godfather

9. Three Godfathers 9. The Score
10. Mumbai Godfather 10.The Black Godfather

Most of the existing movie recommendation systems are based on collabo-
rative filtering and build the movie proposal set analysing users ratings. Being
famous programs more often rated, the proposed movies are usually the most



famous ones. On the contrary, we are able to propose shows that are less popular
or forgotten but that can still be interesting for the user. As this kind of results is
new and there is not a single measure to compute similarity of multimedia plots,
the evaluation of the results lacks an absolute benchmark. Anyway, results that
we obtained, by using different techniques, are compared and briefly discussed.

Results obtained by applying tf-idf and log techniques on the local database
show slight differences, and the quality does not seem to be significantly different.
Instead, a noticeable quality improvement can be achieved by applying the LSA
technique. Plots that are selected to be similar using tf-idf or log techniques
usually contain terms and names that appear in the target plot, but they do
not necessary refer to similar topics. LSA allows to select plots that are better
related to the target’s plot themes.

We report some manual tests that have been performed in order to evaluate
and compare the weighting techniques. In Table 2 it can be noticed that the
qualities of the results that could be achieved by the tf-idf and log techniques do
not seem to be significantly different. In both of the ranked lists eight plots refer
to the target plot whereas the other two plots seem to be related to similar con-
tent (godfathers). It is, therefore, not reasonable to suggest using one technique
rather than the other.

Table 3. A comparison between the tf-idf technique application only and the further
application of LSA on the movie “Inception”

LSA tf-idf

1. Inception 1. Inception
2. The Dream Team with Annabelle and Michael 2. Cobb

3. Rainbow’s Children 3. Somewhere in Georgia
4. In Pursuit of a Dream 4. Firecreek

5. Persistence of her Memory 5. House IV
6. Twenty-Seven Stories 6. Whiplash

7. The Silver Key 7. House
8. Mariposa china 8. Following

9. The Boat People 9. The Incident
10. Twee dromen 10. Lefty-Right

Table 3 shows the outcome of Latent Semantic Analysis is superior to other
techniques such as tf-idf. Here, all plots that have been selected by using LSA
technique refer to the theme of dreams and subconsciousness just like the target
plot. In contrast, the results originating from tf-idf seem to be connected to the
target plot more by the surname of the main character of the movie “Inception”,
which is Cobb.

Finally, in table 4 LSA results for the target movie series “Smallville” are
compared, the evaluation took into consideration LSA over tf-idf and LSA over
log techniques. All the plots that have been selected in both techniques refer to



Table 4. A comparison between the LSA over tf-idf and LSA over log weighting
techniques on the movie “The Godfather”

LSA over tf-idf LSA over log

1. Smallville 1. Smallville
2. Adventures of Superman 2. Adventures of Superman

3. The Stolen Costume 3. The Adventures of Superboy
4. Lois & Clark: The New Adventures . . . 4. The Stolen Costume

5. Superman: The Animated Series 5. Legion of Super Heroes
6. Superman Returns 6. Superman: The Animated Series
7. Superman (series) 7. Panic in the Sky

8. Superboy 8. Lois & Clark: The New Adventures . . .
9. Stamp Day for Superman 9. Lucy and Superman

10. Superman 10. All That Glitters

the topic of super-heroes and Superman. Just like in table 2, it is hardly possible
to decide which results are of a better quality between Tf-idf and Log. The tf-idf
technique might be preferred as, in contrast to the log technique, it does not
require discarding terms that have a document frequency equal to one.

LSA process is based on the SVD of the plot-keyword matrix having a com-
plexity of O(m× n) where m is the number of multimedia (rows of the matrix)
and n is the number of keywords (columns) and m ≥ n. There are about 200000
multimedia for which a plot value is available in the database after the IMDB
data import and almost 220000 different keywords that are extracted from the
plots. Thus, the time cost for the decomposition of the matrix is O = 3 · 1015.
Furthermore, the decomposition requires random access to the matrix [5], which
implies an intensive usage of the central memory. In order to efficiently compute
the decomposition of the matrix and to avoid the central memory saturation, we
utilized the framework Gensim11.

The computational costs to create the LSA model on the local Linux system
(4 AMD Phenom(tm) II X4 695 3.4 GHz processors, 3.6 GB RAM) are the
following:

Given a target plot, all the other plots in the database can be ranked accord-
ing to their similarity in about 42 seconds. To further decrease similarity time
consumption, three LSA models have been built using different assumptions.
These tests have been conducted on the data extracted from DBpedia. Table 6
summarises the time performance of our recommendation system obtained using
the different models. The complete model includes all the movies having a plot
(78602 movies) and all the keywords appearing in these plots (133369); in this
model the matrix rank is reduced by LSA to 500 (LSA topics). While generating
the approximate model, short plots (less than 20 keywords) and low-frequency
keywords (appearing in less than 10 plots) have been ignored. Tf-idf and log
weights having a value below 0.09 and LSA weights having a value below 0.001
have been set to 0. Here, the matrix rank has been reduced to 350. The fast

11 http://radimrehurek.com/gensim/



Table 5. Computational Costs

Operation Description Time CPU av-
erage use

Central
Memory
average
use

Plot vector-
ization

Each plot is converted in a
vector of keywords and cor-
responding frequencies

5 minutes 75% 11%

Tf-idf weights
or Log
wrights

For each keyword the tf-idf
or the log weight is com-
puted

1 minute 97% 10%

LSA weights For each keyword the lsa
weight is computed

9.5 hours 97% 42%

model is a further approximation of the approximate model in which the tf-idf
and log weights having a value below 0.14 have been set to 0 and the matrix
rank has been reduced to 200.

Table 6. Similarity time costs obtained using complete, approximate and fast models

Complete model Approximate model Fast model

minimum document frequency 1 10 10
minimum vector length 1 20 20
minimum tf-idf weight 0 0.09 0.14
minimum log weight 0 0.09 0.14
minimum lsa weight 0 0.001 0.001
number of lsa topics 500 350 200

matrix size (rows x columns) 78602 x 133369 68038 x 15869 68038 x 15869

Similarity time cost 12 seconds 7 seconds 5 seconds

With the help of a different parametrization, it is thus possible to significantly
cut down the time cost for computing similarity operations. Anyway, the more
the model is approximated, the lower the accuracy becomes12.

As described in section 3, the similarity of plots can be combined with the
similarity of other features. We performed an experiment to compare the IMDb
recommendation list for the movie “The Matrix” with the recommendations
that have been generated by our system (we used the complete LSA model). In
Table 7 are shown both the proposals that have been generated considering the
plot only or plot together with other features.

12 The three models have been tested performing the similarity ranking of the local
database in regard to 10 different target-movies.



Table 7. A comparison on the different recommendation lists obtained for the movie
“The Matrix”

IMDB Recom. Plot-based Recom. Feature-based Recom.

Title Ratings Title Ratings Title Ratings
The Matrix
Reloaded

203557 Plug & Pray 50 The Matrix Reloaded 203557

The Matrix
Revolutions

169963 Die Millennium-
Katastrophe -
Computer-Crash
2000

99 The Matrix Revolu-
tions

169963

Star Wars:
Episode V -
The Empire
Strikes Back

357393 Computer Warriors 24 Nezi: The Night of
the Crazy Screws

0

Star Trek
(2009)

205011 Colossus: The Forbin
Project

3254 In the Realm of the
Hackers

41

Rise of the
Planet of the
Apes

120325 The KGB, the Com-
puter and Me

42 Plug & Pray 50

Outlander 28040 The Responsibilities
of Men

0 The Unbearable
Whiteness of Dean

7

The Time
Machine

47159 In the Realm of the
Hackers

41 The Quest for 15

Mad Max
Beyond
Thunderdome

34964 The Computer Virus 0 2010: A Kitchen
Odyssey

9

Dune 48985 10. Le clone 12 Unauthorized Access 12



As it can be observed, the IMDb recommendation includes only movies that
have been rated by a high number of users (more than 28000), while in the
plot-based and in the feature-based recommendations even movies that are not
famous have been proposed to the user. IMDB is not able to suggest movies
similar to a selected plot. As a matter of fact, except for the movies of the Matrix
trilogy, the IMDB recommendations are not related to the topic of “The Matrix”,
but they are rather the most popular science fiction movies. In contrast to the
IMDB suggestions, both our algorithms are able to list a set of movies that are all
related to at least one of the topics such as intelligent machines, computer hacker,
computer viruses etc. An interesting observation is that, since the feature-based
algorithm combines plots and features to select the recommendations, it is able
to select the Matrix trilogy (that are of course the more related items) and a list
of movies strongly related to the topic of “The Matrix”.

5 Related Work

Information filtering systems can be a powerful tool in giving assistance to the
user with the aim of delivering a narrow set of items which might be of interest.
Recommendation algorithms are usually classified in content-based, collabora-
tive filtering and hybrid recommendation systems [1]. Collaborative filtering
systems are widely industrially utilized, for example by Amazon [18], Movie-
Lens [19] and Netflix [4], and recommendation is computed by analysing user
profiles and user ratings of the items. When user preferences are not available, as
in the start-up phase, or not accessible, due to privacy issues, it might be neces-
sary to develop a content-based recommendation algorithm, as the one proposed
in [16]. Collaborative filtering and content-based approaches are combined in
hybrid systems as in [2, 6]

Content-based recommendation systems rely on item descriptions that usu-
ally consist of punctual data. In [20] information is instead extracted by text to
perform a categorization that supports the rating-based book recommendation.
Herby we propose, instead, a recommendation approach that is based on natural
language data, such as movie plots. Jinni13 is a movie recommendation system
that analyses as well movie plots, but relies on user ratings, manual annotations
and machine learning techniques.

Descriptions of multimedia contents can be extracted from suitable data
sources. [3] utilizes movie features that have been extracted from IMDB and [7]
shows how the similarity of the features can be combined to define the distance of
two movies, but none of these works involves the analysis of movie plots. Many
efforts in other research areas, like schema matching and ontology matching,
developed keyword similarity techniques exploiting lexical resources [27].

Evaluating the similarity among movies is closely related to the task of text
similarity. Text similarity is essentially the problem of detecting and comparing
the features of two texts. One of the earliest approaches to text similarity is

13 http://www.jinni.com/



the vector-space model [24] with a term frequency / inverse document frequency
(tf/idf) weighting. This model, along with the more sophisticated LSA semantic
alternative [14] has been found to work well for tasks such as information retrieval
and text classification. LSA was shown to perform better than the simpler word
and n-gram feature vectors in an interesting study [17] where several types of
vector similarity metrics (e.g., binary vs. count vectors, Jaccard vs. cosine vs.
overlap distance measure, etc.) have been evaluated and compared.

In [16], Newsweeder, a news recommendation system is described, that relies
on tf-idf. Beside weighting systems, mathematical techniques can be used to
improve similarity results, such as LSA. Thanks to the analysis of word co-
occurrences LSA allows to partially deal with the problem of polysemy and
synonymy and to outperform weighting systems [17].

Due to the high computational cost of LSA there have been many work
around in the area of approximate matrix factorization; these algorithms main-
tain the spirit of SVD but are much easier to compute [13]. For example, in [11]
an effective distributed factorization algorithm based on stochastic gradient de-
scent is shown. We opted for a scalable implementation of the process that does
not require the term-document matrix to be stored in memory and is therefore
independent of the corpus size [23].

6 Conclusions and Future Work

The paper presented a plot-based recommendation system. The system classifies
two videos as being similar if their plots are alike. A local movie database with a
flexible structure has been created to store a large amount of metadata related to
multimedia content coming from different sources with heterogeneous schemata.
Three techniques to compare plot similarity have been evaluated: tf-idf, log and
LSA. From the results obtained, LSA turned out to be superior in supporting
the selection of similar contents. Efficiency tests have been performed to speed
up the process of LSA computation. The tests led to the development of a
recommendation system able to compare the plot of a movie with a 200000 plots
database. The results are provided in a ranked list of similar movies in less than
one minute. An innovative feature of the system is its independence from the
movie ratings expressed by users; this allows the system to find strongly related
movies that other recommendation systems, such as IMDB, do not consider.

Keywords extraction might benefit from the use of lexical databases as Word-
Net [10] as they are particularly helpful in dealing with synonyms and pol-
ysemous terms. In WordNet, words (i.e. lemmas) are organized in groups of
synonyms called synsets. Synsets are connected depending on semantic relation-
ships such as hypernymy and hyponymy. Each keyword might be replaced by its
meaning (synset), before the application of the weight techniques. To understand
which of the synsets better express the meaning of a keyword in a plot we may
adopt Word Sense Disambiguation techniques [21]. The semantic relationships
between synsets can be used for enhancing the keyword meaning by adding all
its hypernyms and hyponyms [22, 26].



In section 4, we performed some tests using IMDb data and other tests using
DBpedia data; however we have not yet tested the system with a large amount
of data coming from different sources. As a future work, we will evaluate other
movie repositories, such as the Open Movie Database (TMDb) and the Rotten
Tomatoes14.

Acknowledgments. The work hereby presented has been possible thanks to
the Erasmus internship of Tania Farinella at vfree.tv. Particular appreciation
goes to Thomas Werner and Andreas Lahr15, founders of vfree.it, for their sug-
gestions and collaborations during the intership and the valuable comments on
the paper.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE TRANSAC-
TIONS ON KNOWLEDGE AND DATA ENGINEERING, 17(6):734–749, 2005.

2. M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative recommenda-
tion. Communications of the ACM, 40:66–72, 1997.

3. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social
and content-based information in recommendation. In In Proceedings of the Fif-
teenth National Conference on Artificial Intelligence, pages 714–720. AAAI Press,
1998.

4. J. Bennett, S. Lanning, and N. Netflix. The netflix prize. In In KDD Cup and
Workshop in conjunction with KDD, 2007.

5. M. Brand. Fast online svd revisions for lightweight recommender systems. In In
SIAM International Conference on Data Mining, 2003.

6. R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12(4):331–370, Nov. 2002.

7. S. Debnath, N. Ganguly, and P. Mitra. Feature weighting in content based rec-
ommendation system using social network analysis. In Proceedings of the 17th
international conference on World Wide Web, WWW ’08, pages 1041–1042, New
York, NY, USA, 2008. ACM.

8. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for Infor-
mation Science, 41(6):391–407, 1990.

9. S. T. Dumais. Improving the retrieval of information from external sources. Be-
havior Research Methods, Instruments, & Computers, 23(2):229–236, 1991.

10. C. Fellbaum, editor. WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press, illustrated edition edition, May 1998.

11. R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factoriza-
tion with distributed stochastic gradient descent. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’11, pages 69–77, New York, NY, USA, 2011. ACM.

14 http://developer.rottentomatoes.com/
15 thomas.werner@vfree.tv, andreas.lahr@vfree.tv



12. A. Kontostathis and W. M. Pottenger. A framework for understanding latent
semantic indexing (lsi) performance. Inf. Process. Manage., 42:56–73, January
2006.

13. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, Aug. 2009.

14. T. K. Landauer and S. T. Dutnais. A solution to platos problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological review, pages 211–240, 1997.

15. T. K. Landauer, D. Laham, and P. Foltz. Learning Human-like Knowledge by
Singular Value Decomposition: A Progress Report. In M. I. Jordan, M. J. Kearns,
and S. A. Solla, editors, Advances in Neural Information Processing Systems, vol-
ume 10. The MIT Press, 1998.

16. K. Lang. Newsweeder: Learning to filter netnews. In in Proceedings of the 12th
International Machine Learning Conference (ML95, 1995.

17. M. D. Lee and M. Welsh. An empirical evaluation of models of text document
similarity. In In CogSci2005, pages 1254–1259. Erlbaum, 2005.

18. G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item
collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

19. B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl. Movielens un-
plugged: Experiences with an occasionally connected recommender system. In
Proceedings of ACM 2003 Conference on Intelligent User Interfaces (IUI’03) (Ac-
cepted Poster), Chapel Hill, North Carolina, 2003. ACM.

20. R. J. Mooney and L. Roy. Content-based book recommending using learning for
text categorization. In Proceedings of the fifth ACM conference on Digital libraries,
DL ’00, pages 195–204, New York, NY, USA, 2000. ACM.

21. R. Navigli. Word sense disambiguation: A survey. ACM Comput. Surv., 41(2),
2009.

22. L. Po and S. Sorrentino. Automatic generation of probabilistic relationships for
improving schema matching. Inf. Syst., 36(2):192–208, 2011.

23. R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.

cz/publication/884893/en.
24. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Commun. ACM, 18:613–620, November 1975.
25. H. Schmid. Probabilistic Part-of-Speech Tagging Using Decision Trees. In Pro-

ceedings of the International Conference on New Methods in Language Processing,
pages 44–49, 1994.

26. S. Sorrentino, S. Bergamaschi, M. Gawinecki, and L. Po. Schema label normaliza-
tion for improving schema matching. Data Knowl. Eng., 69(12):1254–1273, 2010.

27. R. Trillo, L. Po, S. Ilarri, S. Bergamaschi, and E. Mena. Using semantic techniques
to access web data. Inf. Syst., 36(2):117–133, 2011.

28. G. Yunhua, S. Shu, and Z. Guansheng. Application of nosql database in web
crawling. International Journal of Digital Content Technology and its Applications
(JDCTA), 5(6):261–266, 2011.


