SEWASIE

Semantic Webs and AgentS in Integrated Economies
IST-2001-34825

WP1
Task 1.1
Deliverable 1.6

SEWASIE Architectur e Agentizatio n

(Draft 0.2, 26/11/2003)

Abstrac t —

We describe in this document the basic guidelines for
the specification of the SEWASIE architecture in terms
of agents technology, and its implementation. We first
present general properties of all agents, and the partic-
ular design of the different agents that build the system.
Then, we identify the necessary agents features for SE-
WASIE, and evaluate currently available agent platforms
in these sense.

Pablo Fillottrani

FUB

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

Documen t informatio n

Document ID code | 1.6

Keywords SEWASIE, architecture, agents

Classification FINAL Date of reference | 26/11/2003
Distribution level Sewasie Consortiu m

Editor Pablo Fillottrani FUB

Authors Pablo Fillottrani FUB
Jurgen Dix FUB

Reviewer | Enrico Franconi FUB
Sergio Tessaris FUB
Sonia Bergamaschi UNIMO

Version history

Date Version Description

3/10/2003 | DRAFT 0.1 | Initial draft
18/12/2003 | DRAFT 0.2 | Updated: Aachen decisions, available platforms evaluation

Copyrigh t notice s

© 2002-2005 SEWASIE Consortium. All rights reserved. This document is a project
document of the SEWASIE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the SEWASIE partners, except
as mandated by the European Commission contract IST-2001-34825 for reviewing and
dissemination purposes.

All trademarks and other rights on third party products mentioned in this document
are acknowledged as owned by the respective holders.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 2 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

Content s
1 Executiv e summary 4
2 Relevant FIPA Standard s 5
3 SEWASIE Agents 9
3.1 Query Agents 9
3.2 Brokering Agents 12
3.3 SINodes 14
3.4 Monitoring Agents e e e e 15
3.5 Communication Agents 16
4 SEWASIE Agent Environmen t 16
5 Agent Developmen t Platform s 18
5.1 ADK . . . e 18
5.2 Aisland e 19
5.3 April AgentPlatform 20
5.4 Comtec AgentPlatform 21
55 FIPA-OS e 21
5.6 Grasshopper 22
5.7 JACK . . e 23
5.8 JADE 24
5.9 Java AgentServices APl. 25
510 Evaluation 26
26/11/2003 1.6 - SEWASIE Architecture Agentization Page 3 of 29

Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

1 Executiv e summary

The goal of this document is to present the guidelines for discussing how to include
the agents idea into the SEWASIE architecture. It is built upon all previous deliver-
ables describing the global SEWASIE system, and each of its modules. No underlying
technology is assumed. Further versions of this documents will incorporate specific
definitions of points currently informally described.

The SEWASIE project aims at developing a FIPA! compliant trusted agent network
[7, section 7.2.1], featuring completely open, scalable and secure-oriented architecture
issues with the aim of making available the knowledge as synthesized in semantically
enriched nodes of a network.

The SEWASIE architecture is not a general agent framework, and its main objec-
tive is not interoperability with other platforms, so only some of FIPA specifications are
relevant to the project. In the first section we present these relevant standards. Then,
SEWASIE architecture is described in terms of agents, and their necessary character-
istics are presented. After that, we introduce the SEWASIE Agent Environment (SEA),
the distributed software platform that provides these services for all agents. Finally, in
order to provide the basis for agents and SEA implementations, several existing agent
platforms are evaluated.

LFoundation for Intelligent Physical Agents.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 4 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

2 Relevant FIPA Standard s

We briefly introduce here the most important FIPA specification that are relevant for
the SEWASIE architecture: the FIPA Abstract Architecture Specification, and the FIPA
Agent Management Specification.

The FIPA Abstract Architecture Specification[13] identifies architectural abstractions,
and their relationships, from agent systems. The main objective is to foster interoper-
ability and reusability, but also by describing systems abstractly it becomes clearer how
agent systems can be created so that they interoperate. From this set of architectural el-
ements and relations one can derive a broad set of possible concrete architectures. We
now present a high level description of the architecture and its main elements, and in the
following sections we map the SEWASIE architecture to this elements and relationships.
Typewrite r fontis used to identified standard elements of the architecture.

An agent is a computational process that implements the autonomous, commu-
nicating functionality of an application. An agent is the fundamental actor on any in-
stantiation of the abstract architecture, which combines one or more service capabil-
ities into a unified and integrated execution model. A message is an individual unit
of communication between two or more agents. Typically, agents communicate using
an agent communicatio n language . Each agent has an agent-name , which is
unique and unchangeable. A servic e is a functional coherent set of mechanisms in
the agent platform that supports the operations of agents and other services. These
services should not be confused by agent-provided services within instantiation of the
architecture. Services may be implemented by agents, or as software that is accessed

via method invocation. A services-directory-servic e is used to register and
locate services within the FIPA infrastructure. Services include, but are not limited
to: message-transport-services , agent-directory-services , gateway ser-

vices, message buffering services, mobility services, etc (note that the latter services
are not mandated in the specification). The message-transport-service is the service
that supports the sending and receiving of messages. The agent-directory-service al-
lows an agent to register its description so that other agents can communicate with it.

The FIPA Agent Management Specification[14] provides the normative framework
within which FIPA agents exist and operate, through the definition of an Agent Manage-
ment Reference Model. It establishes the logical reference model for the creation, reg-
istration, location, communication, migration and retirement of agents. Figure 1 shows
the entities contained in the Agent Management Reference Model.

An Agent Platfor mprovides the physical infrastructure in which agents can be
deployed. It consists of the machine(s), operating system, agent support software, FIPA
agent management components, and agents. The internal design of a platform is an
issue for agent system developers, and is not subject to standardization. The concept
of an agent platform does not mean that all agents resident on it have to be co-located
on the same host computer. It is possible to envisage a fully distributed platform built
around proprietary or open middleware standards. FIPA standardization efforts is con-

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 5 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

Software
Agent Platfommn
k3
Agent ! ,
Agent Management E;E?I?ttantgr
Sygem

F

Message Transport System

2

b

Message Transport System

Agent Platfommn

Figure 1: FIPA Agent Management Reference Model.

cerned only with how communication is carried out between agents who are native to
the platform and agents outside it. Agents are free to exchange messages directly by
any means that they can support.

The Director y Facilitato r is an optional component of the platform. If present,
it must be implemented as a service . It provides yellow pages services to other
agents. Agents may register their services, or query the it to find out what services
are offered by other agents. The Agent Management Syste mis a mandatory com-
ponent that maintains a directory of agent-names registered in the platform. It pro-
vides white pages services to other agents. It supports operations for registering,
deregistering, modifying, and searching. Additionally, it can instruct the platform to
terminate, create, suspend and resume agents. Both components are reification of
agent-directory-service . The Message Transpor t Syste mis the default
communication method between agents on different platforms.

In summary, FIPA agents exist physically on an agent platfor mand realize their
funcionalities with the help of the facilities offered in it. In this context, an agent, as
a physical software process, has a life cycle that can be used to describe the states
which it is believed are necessary, and the responsibilities of the agent management
syste min these states.

The life cycle of a FIPA agent (according to [14]) is shown in figure 2. It is character-
ized by the following states:

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 6 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

Wake Up
1k o
Desty
Ouil
Creale
L d
Figure 2: FIPA Agent Life Cycle.
1. initiated . the agent has been created, but has not received yet any message

invoking its services.

2. active : the agent is executing tasks in response to one or more service invoca-
tions.

3. waiting : the agent has completed all activities involved in all the received service
invocations.

4. suspended : the agent is waiting for some external conditions in order to continue
executing its tasks.

5. transit : the agent is in the process of changing its location. Only for mobile
agents.

This life cycle has the following characteristics:

e it is bounde d by the agent platform : a static agent is physically managed
within a platform, and its life cycle i therefore always bounded to a specific agent
platform

e it is applicatio n independent : the life cycle model is independent from any ap-
plication system and it defines only the states and the transitions of the agent
service.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 7 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

e itis instanc e oriented : the agent described in the life cycle is assumed to be an
instance which has unique name and is executed independently.

e it is unique : each agent has only one life cycle at any time, and within only one
agent platform

The agent management system , on behalf of the agent platfor mhas the
responsibility of message delivery to every agent in the activ e state, and to buffer
messages to agents in the initiated , waiting , suspende d and transi t states.
Buffered messages are delivered when the agent returns to the activ e state. In the
case of mobile agents this may involve forwarding the messages to a new location.

The transitions between states of an agent can be described as:

e create : the creation or installation of an agent. This can only be initiated by the
agent managemen system .

e invoke : the invocation of a new agent. This can only be initiated by the agent
managemert system .

e destroy : the forceful termination of an agent. This can only be initiated by the
agent management syste mand cannot be ignored by the agent.

e quit : the graceful termination of an agent. This can be ignored by the agent.
e suspend : puts an agent in a suspended state.

e resume : brings the agent from a suspended state. This can only be initiated by
the agent managemen system .

e Wwait : puts an agent in the waiting state. This can only be initiated by an agent.

e wake up: brings the agent from a waiting state. This can only be initiated by the
agent managemert system .

e move: puts the agent in a transitory state. This can only be initiated by the agent,
and is valid only for mobile agents.

e execute : brings the agent from a transitory state. This can only be initiated by
the agent management system, and is only valid for mobile agents.

In the cases when there is no specification, the transitions can be initiated either by
the agent, or by the agent management system . Transitions initiated by the agent
management syste mmay be internally generated, or executed in response to require-
ments from other agents in the platform, or from external users of the platform.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 8 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

3 SEWASIE Agents

In the SEWASIE architecture[7], each agent has a type that determines the set of ser-
vices the agent provides to other agents, and the set of actions the agent can invoke
in response to a service. These actions are capable of changing the data structures
managed by the agent, and/or sending messages to other agents requesting services.
The action an agent can take, as well as its action policy, must be clearly stated in some
declarative language.

The SEWASIE system is a “type closed” agent system, in the sense that it is not
expected to incorporate new types of agents, although it is possible to incorporate, and
delete, new agents of the pre-defined types. We will informally present each type of
agent by introducing first the services it provides to other agents, then describing its
life cycle, and finally introducing the set of actions it supports. Some of the described
services and actions are not needed in the narrow-deep scenario which is the starting
point of the development plan, anyway they are included in order to give a complete
picture of the agent structure of the system.

There are four basic types of agents described in the SEWASIE architecture: query
agents (QA), brokering agents (BA), monitoring agents (MA), and communication agents
(CA). SEWASIE Information Nodes (SINodes) might also be considered as agents,
since they exhibit some patterns of interactions with agents of the previous types. SIN-
odes heavily depend on BA, and provide the essential services for the work of QA.
Therefore, we also include SINodes in the agent class.

User interfaces might be also considered as agents, since they interact not only
with users but also with the other agents. The Query Tool (QT) user interface initiates
most agent interactions in the SEWASIE architecture, but provides no services to other
agents. A QT generates QAs from user requirements, and after receiving the results
it may generate MA or CA. The QT must also interact with BA in order to generate the
query. The QT is described in [24]. So the QT is the main client of agent services, but its
behavior is only that of a client and not a peer of proper agents. Other user interfaces,
like the ontology designer interface, have even simpler behavior. So we have chosen to
keep user interfaces outside of the agent infrastructure of SEWASIE.

3.1 Query Agents

Query Agents are in charge of the global query execution strategy, namely address-
ing the initial BA, receiving SINodes and BA references, actually querying specific SIN
Nodes and combining their results. The term “query” is to be interpreted as a general
statement in a known intermediate query language, and includes information on the
context of the user at the time of the establishment of the query[7].

A QA is the “motion item” of the system, and should be the only carrier of information
among the user and the system. The following service is the main objective of a QA:

e solve-quer y to carry a query plus the relevant pieces of the user ontology/profile,

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 9 of 29
Draft 0.2

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

which may help the brokering agents qualify the semantics of the query, define a
guery plan, doing the query rewriting for specific SINodes and BA, and merge the
results. These actions involve processing information from BA, and decide which
further BA to contact. In order to fulfill this service the QA needs to know the query
and the initial BA. These service should be invoked through an asynchronous
messaging protocol.

This service is available only to QT and MA. Query language for the initial query plus
the context information, language for results, and communication protocols are not yet
defined.

The life cycle of a QA is initiated by an invocation of this only service, and it is finalized
when delivering the results. Therefore, the life of a QA is attached to only one query
processing. QA are instantiated by users for each request to the system, but also by
other agents like monitoring agents. QA creation by users through the user interface is
described in [24], and by monitoring agents in [5]?. Monitoring agents requires querying
directly by URI [5].

According to [7] “A typical interaction between a QA and a BA may imply that the
BA will provide directions to relevant SINodes and information on SINodes content, or
reference the QA to other BA. The QA will then move to such nodes to query them,
or may move on to other BA to ask them for directions against.”. The impact of several
physically moving QA, carrying partially constructed answers all over the network seems
too expensive, and it is a potential overload on the communication protocols. It seems
preferable that QA reside in a single Server mode, sending remote messages to BA and
SINodes on other Server nodes. In this way, partial result data only returns over the
network to the query agent, ensuring only one movement for each partial result.

It might be possible for a query agent to decide that the SEWASIE Server node it is
residing in is overloaded, and therefore prefers to move to other Server node in order
to improve query answering performance (load balance). It is not clear if this type of
mobility would be desirable for the SEWASIE system. In this case, moving policies for
the agents should be established. These could be supported and/or implemented by
the underlying agent platform. Other adaptive capabilities could be incorporated into
QA: missing BA and SINodes, delayed responses, unsatisfactory responses, etc.

Another possibility is to have a network of cooperative QA. Again, in order to improve
performance, in the case of several BA yet to be consulted, the QA might decide to
delegate part of its duties into other QA. Then, a hierarchical network of QA will be
responsible for answering a single query. Data reconciliation in answers should be
done when the delegated agent finishes it work, and it is subsumed by its ancestor
QA. This option arises the problem of maintaining the consistency of BA and SINodes
to be consulted. It is possible to introduce suitable protocols between query agents and
their delegated counterparts, for example see [10, 19, 9, 4]. It is important to notice

2In [5] it is said that monitoring agents activate query agents through the standard user interface, but
this seems to be contrary to the description in [7][section 5.2.6]

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 10 of 29
Draft 0.2

vincini
Highlight

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

that the merging techniques for partial answers should allow this task decomposition.
Currently developed techniques for query solving [21] do not support this possibility.

In summary, all states from the life cycle of FIPA agents might be possible for QA.
The creat e transition is activated by the QT and MA, followed by an immediate invok e
transition for the solve-quer y service. Typically, the agent works in solving this require-
ment, but may enter in the suspende d or waitin g states if necessary. No other ser-
vice requirement should be delivered to the agent. In case of mobile QA, then also the
transi t state is necessary. Once all relevant BA and SINodes have been found and
consulted, and the result is delivered, the agent automatically qui t itself.

The following actions are combined in a QA to respond to a solve-quer y demand:

e query-BA(BA) given a query, this action expresses it in terms of the ontology
understood by a BA, and presents the updated query to it. As a result, the BA
may respond with a set of relevant SINodes, and a set of additional BA to consult.
The QA should ask the BA the ontologies relevant to the query, rewrite the query
according to these mappings, and send the updated query to the BA. In [20] it
is described the response the BA should have in this case. The results obtained
should update the internal state of the QA.

e query-SIN(SINode,BA) given a query, this action expresses it in terms of the vir-
tual global view associated to a SINode, retrieves the answer, and merges it with
previous results. Again, the rewriting of the original query in order to be under-
stood by the SINode, and the merging of partial results are not yet defined. The
SINode was informed to the QA by its managing BA, which is responsible also
for providing the SINode ontology in order to carry out the rewriting process. The
response of a SINode in this case is described in [20, 21]. The merging step could
be done in this moment, or in the execution of query-SI N action, or in both. This
merging strategy has to be decided, according to the types of the results from
each SINode.

e deliver-resul t upon execution of this action, the QA decided that no more search-
ing is necessary. If the partial results are merged in each query-SI N action, then
this action trivially returns what has been previously constructed, and updates the
query result manager. Otherwise, it builds the final answer based on the partial
results obtained from each SINode, and also updates the query result manager.

All these actions also require knowledge of the initial query and the initial instance of
QT.

A clear declarative description of these and all the other actions presented in the
other types of agents is expected in future documents. The plan generation that exe-
cutes a sequence of these actions is the main core of a QA. In order to build this plan,
in [22, section 6.2.1] it is expected a cost estimation for the response of a query from
each BA and SINode. This has yet to be defined. A trivial plan, assuming all BA and
SINodes are always available, which exhausts the list of available BA for a given query,
could be implemented for the first prototypes.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 11 of 29
Draft 0.2

vincini
Highlight

vincini
Highlight

vincini
Highlight

vincini
Highlight

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

Since very many users may issue very many queries, QA should be “lean and mean”,
in fact as small and fast as possible [7]. In these sense, query rewriting according to
local ontologies (BA, or SINodes) could be delegated to the other agents (in particular
BA), which are the actual owners of the ontologies. As an alternative, a query may be
formed by a set of pairs (local-query, agent) (initially consisting of only one pair), and
the rewriting is delegating to the brokering agent that informs the new brokering agent
or the SINode.

In [7, section 5.1.3.3] it is said that QA may initiate monitoring agents. It is not clear
when should it happen, or if the monitoring agent is simply initiated by the QT user
interface instead of a QA.

Therefore, a QA has the following properties:

e s attached to solve only one query. This query and the initial BA are provided by
the QT.

e interacts with BA and SINodes in order to build the answer for its query.

e must adapt itself to the conditions on the network (missing BA, SINodes, or de-
layed responses from them).

¢ has the possibility of being mobile, in the case it is aware of the load in the host
computer.

e exhibit no cooperation with other agents of its kind.

o finishes its execution after delivering the result.

3.2 Brokerin g Agents

Brokering Agents (BA) are responsible for maintaining the meta data about the SE-
WASIE network. This meta data may consist in the ontologies which are present in the
underlying SINodes, and also information about ontologies in other BA. The proposed
architecture of brokering agents is described in [22].

There are different roles for BA which depend on the business model of the company
which deploys the BA. A company may establish a BA to manage access to its sources
which it makes available via SEWASIE. A company specialized on information brokering
may establish a BA that combines ontologies provided by several other BA.

In general, the following services should be offered by all BA:

e manage-SIN(SINode) the BA is selected to manage a SINode, or it is instructed
to update the ontology of an existing SINode. The local ontology of the SINode
has to be mapped to the ontology of the BA, and the BA has to send a feedback to
the SINode. Also, the new ontology must be broadcasted to other BA. Therefore,
this message invoking this service should be asynchronous. The response to this
service is described as use case MK1 in [22, section6.1.1.1]. It is not clear who
will require this service (the SINodes?, authorized users?).

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 12 of 29
Draft 0.2

vincini
Highlight

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

e receive-ontology(ontology , BA) the BA is informed about the ontology of another
BA. The received material is incorporated in the current mapping of the BA, and it
is evaluated for forwarding to others BA. This forwarding process may take time to
complete, so the invoking message of this service should be asynchronous. This
service is described as steps 4-6 from use case MK2 in [22, section6.1.1.2]. The
requiring BA expects some feedback from the validation of the ontology.

e get-mappings(query) a QA issues a query to the BA. The handling of this ser-
vice is the main task of a BA. It is described as steps 4-6 from use case MP1 in
[22, section6.2.1.1]. The BA responds with a set of mapping including other BAs
and SINodes. Depending on the response time, this message can be invoked
synchronously or asynchronously.

e get-ontos(query , BA) a BA is asked about the ontology it knows is residing in
other BA. This knowledge is directly available in the requested BA, so the service
can be synchronously invoked. This service is needed by QA to rewrite queries
before asking the referred BA.

e get-info-ontolog y other SEWASIE agents (CA, QT, MA) request the ontology of
the BA. This is described as use case MP2 in [22, section6.2.1.2]. As in the
previous case, this knowledge resides in the requested BA, so the service could
be synchronicly invoked.

The life cycle of a BA is initiated when an authorized user creates the BA. In the
invok e transition, knowledge of existing SINodes and other BA should be immediately
handled to the newly created BA, in order to build the local ontology. Being in the
activ e state, a BA may receive messages for updating its knowledge (the first two
services described), or for consulting its knowledge (the last three services described).
Serving the former messages the BA it is said to be in design phase, while serving
the latter the BA is in query phase. These two phases need not be strictly separated.
So in the activ e state, the BA can accept services in both the design phase and the
query phase. That is, requests to update its knowledge, and requests to inform it. In
case of simultaneous requirements of different phases, the BA should define a policy
for handling them. These agents are expected to be rather large and sophisticated, with
the ability to serve requests quickly and to do some semantic relationships mapping [7].

The following actions can be executed in response to the previous services:

e broadcast-ontolog y this action may be taken when the ontology of the BA is
updated, i.e. when services manage-SIN and receive-ontolog y are requested. It
involves deciding which other BA could be interested in the updated ontology, and
its packaging and sending. It is described as steps 1-3 in [22, section6.1.1.2].

¢ find-relevant-SINode s this action is taken when a query is submitted by a QA. Itis
outlined in [20, section 4], although the concrete approach has yet to be decided.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 13 of 29
Draft 0.2

vincini
Highlight

vincini
Highlight

vincini
Highlight

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

¢ find-relevant-B A this action is also taken when a query is submitted by a QA. Itis
described in [20, section 4].

e deliver-answe r collects partial results from the previous two actions, packages
them, and delivers the result to the QA. The details of this action are not yet de-
fined.

A BA plan should include strategies to handle all incoming requests, and processing
their feedbacks. Some cooperation with other BA could be used in the case of parallel
updating of ontologies, although it is not clear how this can be accomplished. No other
cooperative task seems appropriate for brokering agents.

In principle, a BA does not have to move from the SEWASIE node it was created,
but should be able to cope with network problems[7]. Adaptation to faulty network con-
ditions should be considered for this type of agents. Anyway, the load balance point
mentioned in query agents also applies in this case. Moreover, it is necessary to an-
alyze persistence for these agentes, that is how to save their sates when the hosting
computer is shutting down. Migrating, or reflecting the state in a database could be
done in this case.

3.3 SINodes

The SEWASIE Information Nodes (SINodes) group together several data sources, pro-
viding a logical node of information to the network. These nodes may spread over
several machines, and have significant resources allocates. SINodes internal structure
is described in [7, section5.1.2], including a SINode Query Manager module which is in
charge with contacts with other agents.

The following services are available from SINodes to other agents:

e solve-query(query) accepts a query expressed in terms of the local ontology,
processes it according to the available data sources, builds the answer, and finally
delivers it. This service is only required from QA. The general techniques for
query reformulation and query processing within one SINode is described in [21].
Depending on the response time, this message can be invoked synchronously or
asynchronously.

e get-info-ontolog Yy similar to the service in BA, informs the global view of the data
sources managed by the SINode. This service is required by those BA that are
manager of the SINodes upon the establishing of the link, and may be required
later when BA are updating their ontologies. The knowledge is directly available in
the requested SINode, so this service can be synchronously invoked.

Once SINodes are created, in order to belong to the SEWASIE network, they should
be related to one or more BA. This process may be manual, automated, or semi-
automated. These details are not yet defined, although it is clear that the BA should

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 14 of 29
Draft 0.2

vincini
Highlight

vincini
Highlight

vincini
Highlight

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

require the SINode ontology. Afterward, a QA that have become aware of the SINode
through these BA, can contact it in order to solve its query.

From the point of view of agents, SINodes are not very interesting since they should
autonomously reply all requests. In a similar way to BA, SINodes could incorporate
some kind of persistence in order not to rebuild its entire ontology the hosting SEWASIE
node is not available. Besides this feature, no other agent characteristic like cooperation,
adaptation, or mobility seems necessary for SINodes.

3.4 Monitorin g Agents

Monitoring Agents (MA) are responsible for monitoring information sources according to
user interests which are defined in monitoring profiles. These user interests are defined
as monitoring profiles, or are explicitly stated in the user interface. The monitoring agent
filters monitoring information with respect to these profiles, and provides contextualized
information to be presented to the user by the monitoring interface. To perform this task,
MA regularly generates queries in the SEWASIE network. It is not clear if this is done
by contacting the same QA for each query or by creating a new QA each time, although
the latter solutions seems more adequate to the design of QA. Each monitoring agent
contains a fixed internal ontology which is linked to higher level SEWASIE ontologies.
The description of the architecture of MA is in [5].
The MA only serves the following request:

e monitor(query , BA, monitorin g profiles) given a query, a user profile possibly
with a local ontology, initiates the process of periodically retrieving data, and visu-
alizing the results. It should be invoked by the corresponding user interface, by an
asynchronous message. The execution initiates other user interfaces.

Depending on the business model adopted, a MA may be set up and maintained
exclusively by a single customer (i.e. company). Alternatively, one MA can provide
shared access for multiple customer interested in the domain. In either case, from the
agent point of view, a given MA should interact only with QA, calling for the solve-quer y
service. Like in the case of QA, the life cycle of a MA is entirely defined by serving
only one of request of its service. The suspende d state should be used while waiting
between generating queries, and also while waiting for query results.

It might be possible for a MA to cooperate with others MA regarding similar queries.
This should not be an a-priori agentization decision, but should be established as part
of the monitoring strategy. Agent persistency should also be included in this strategy.
The monitoring phase might overlap periods when the host computer in not powered,
S0 saving and recovering the agent state is necessary. No mobility seems appropriate
for these type of agents.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 15 of 29
Draft 0.2

vincini
Highlight

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

3.5 Communicatio n Agents

CAs initiate electronic negotiations and conducts their initial steps, based on relevant
results they receive from QAs. They are responsible for finding and contacting potential
business partner, asking for initial offers, and ranking them. The human negotiator
can then decide and choose the best offer to begin negotiating with support from the
communication tool. Communication agents are described in [23].

The CA serves the following request:

e initiate-negotiation(query) a new CA is created by a QT based upon a query
result. The CA compiles the request messages, and sends them to the companies
that appear in the query result. In this step, it is possible to create an offer by
extracting information about products specification and prices from catalogs. Thus,
it is possible access the result manager for that information. Once the replies are
received, the CA might check it for consistency, rank them by user-defined criteria,
and notify the user.

e monitor-negotiatio n the user sends this request when s(he) wishes to delegate
parts of the negotiation to the CA. The agent can be helpful by reminding the
user that some information is missing or that a similar state in the negotiation has
already been reached before.

Both these service are invoked asynchronously. Each MA life cycle is initiated by an
invok e transition with an initiate-negotiatio n request. After serving this request, the
MA may only serve one monitor-negotiatio n request for the same query before ending
its execution.

As has been described, most CA interactions are with the user. Its services are
invoked by the QT and other user interfaces, and the user is receiver of the results. Thus,
CA are not active components in the SEWASIE agent infrastructure. Persistency should
be included in this agents. No adaptation, cooperation with peers, interoperability with
other platforms and mobility seems appropriate. The utilitarian behavior of CA should
be included in its negotiation policies.

4 SEWASIE Agent Environmen t

The SEWASIE Agent Environment (SAE) is a FIPA compliant agent platform which
mainly hosts the services of an Agent Management System. The whole life cycle of
agents, including possibly mobility and persistency, is managed by this component.
Agent creation and invocation may be called by the SEWASIE User Interface com-
ponent, or by other agents. Agent identifier is assigned by the SAE during creation, and
once the agent is active it allows other agents to communicate with it. It contains the
agent-name, and contact information. The agent-name should be implemented as a
globally unique identifier that can be used as a unique referring expression of the agent.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 16 of 29
Draft 0.2

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

One of the simplest mechanism is to construct it from the actual name of the agent
and its home platform address, separated by the character. The contact information
includes the a list of transport addresses where messages to the agent can be deliv-
ered. Also, it should be possible to compare agent-names, for example to let a query
agent know whether a particular brokering agent has already been queried. Agents in
SEWASIE might also be in the suspended or waiting state. Both imply stopping the
execution thread of the agent, with the difference that waiting can be only initiated by
the agent itself. It is not decided whether suspended agents is necessary in SEWASIE,
but a waiting state could be useful for queries waiting only for a SIN Node response. In
the case of mobility, it is not clearly defined yet in which way SEWASIE agents should
support this feature (see the discussion in the description of the query agents).

Registration services are needed when finding is a given agent is still active. In
SEWASIE, this may be useful in case of a query agent receiving from a brokering agent
names of other brokering agents that have been deactivated. It might also be useful for
a query agent to find the state of the given initial brokering agent Registration services
are provided by the agent managemen syste min the FIPA standards.

The SAE should also provide security to the agent-level operations. From the agent
side, ensuring that agents can protect from its information and processes from external
access, and from the system side allowing invocation of agent life cycle operations only
to authorized users.

Message transport services are only needed in case of interoperability between plat-
forms is desired. In SEWASIE, this is an essential characteristic of communication
agents [23].

There is no need for additional services in SAE. In particular, Directory Facilitator
services are not needed. Each SEWASIE agents knows the existence of other agents
through the agents to which it is connected. Query agents are created connected to an
initial brokering agent[7], and brokering agents know SIN Nodes in the moment these
nodes are created, and each other by a P2P connection[20]. Since in SEWASIE the
type of each agent is known from the operations that produced its reference, there is no
need of agent service description. In this sense, knowledge about services of agents
can be built into agent code. This increases the coupling between the code of agents,
but it is preferable from the performance point of view. Thesaurus and dictionary ser-
vices are also not needed since these are roles played by the ontologies within each
brokering agent. In this sense, the SEWASIE system constitutes a (although basic)
general agent platform providing its services in a distributed fashion, instead of mono-
lithic replicated algorithms. Precisely this distributed organization of the knowledge is
one of the objectives of the project.

The SAE should be implemented throughout several network sites, we call SEWASIE
nodes. This raises the problem of replicated data, that should be addressed by one of
the several techniques known in database community. Since the replicated data in each
SEWASIE node only consists of the names of the registered agents, this is not expected
to place much burden on the system. It is expected that the selected agent development
platform copes with this problem in a transparent way to the agents.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 17 of 29
Draft 0.2

vincini
Highlight

vincini
Highlight

vincini
Highlight

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

Other agent features like mobility, security and persistence should also be delegated
from the agents to the SAE. As it was described in the previous section, the require-
ments in this sense are not immense. The SAE could implement these features from
scratch, or rely on services provided by the agent development platform. The first option
makes the features more tailorable to specific needs, whilst takes more developing time
due to its complexity. In the second approach we must adapt to the features available
in the chosen development platform, but we obtain the benefits from loosely coupled
components. Considering the diversity and maturity of existing agent development plat-
forms, we think the latter approach is preferable. In next section we consider several
possible agent development platforms for implementing the SAE requirements.

5 Agent Developmen t Platform s

There exists a large number of approaches, toolkits and platforms of different scope and

maturity. Most of the platforms considered come from the Publicly Available Implemen-

tations of FIPA Specifications [12]. Some other well known platforms have also been

included. Evaluation is based exclusively upon the documentation available in each

technology website. None of the platforms has been installed and tested empirically.
Each platform is evaluated according to the following criteria:

1. standard compatibility: support for FIPA specifications

2. agent features: like inter-agent messaging, mobility, persistency and security. For
security we only consider features for intra-platform communication. Security in
inter-platforms communication is not considered since interoperability is not nec-
essary in SEWASIE.

3. availability: whether the technology is publicly available. In this point, we follow the
guidelines outlined in [6].

4. documentation and development tools: we consider the availability of programmer
and user documentation, and the presence in the product environment of tools
that help in programming, debugging, deployment and management of agents.

5. practical applications: known projects that have been built using the platform.

Next we present the available agent platforms, and after that we analyze them for
implementing the SAE.

5.1 ADK

The Tryllian’s ADK (Agent Development Kit)[1] is a mobile component-based develop-
ment platform that allows to build distributed applications based on agent technology. It

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 18 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

is designed and build in JAVA, and supports XML, JXTA and JNDI. The ADK consists
of two parts, the Agent Foundation Classes (AFC) and the Agent Runtime Environment
(ARE). The AFC is an interface layer that contains all classes and interfaces needed
to build agents. It encapsulates all the functionalities of the ARE, so access to this
part is not normally needed for programmers. The product contains a tool for visually
designing, implementing and deploying agents.

In ADK agents are implemented as JAVA clases, and have three distinct parts: body,
knowledge, and behavior. The body is the part of an agent that takes care of executing
tasks, sending messages, and moving the agent around a network. The knowledge part
contains information the agent has about itself and its environment. Lastly, the behavior
portion specifies which actions the agent will make and it is usually customizable for
each agent.

Considering the evaluation criteria, ADK has the following properties:

1. standard compatibility: it supports FIPA 2000 standards.

2. agent features: communication between agents can be done according to several
protocols. It supports X.509 standard for encryption, strong mobility (in the sense
that agents can move between hosts during runtime, taking along their states and
code), and persistency through a number of database software products.

3. availability: The ADK is available for purchase (prices are not available on-line,
although third parties state that it is not a cheap product) or for free evaluation to
educational institutions under a research license program. The current available
version is 2.1. System requirements are Windows or Unix operating system, 70Mb
free in hard disk and a 64Mb memory. Persistency requires database software
installed.

4. documentation and development tools: There is very good documentation avail-
able on-line on both the AFC and the ARE. A JAVA programmer can easily adapt
its code to use AFC. ADK development tools and modules are publicly available
and do not require purchase of a license.

5. practical applications: it is claimed that a number of projects have been built using
ADK, but no details are available. There is an ADK user community where devel-
opers may contribute with publicly available tools to be added to the environment.

5.2 Aisland

Aisland[2] is a hosted project inside Sun’s project JXTA for peer-to-peer systems. JXTA
defines a set of protocols that can be implemented by peers to communicate and collab-
orate with other peers implementing these protocols. It provides a means of standardiz-
ing messaging systems. Alsland’s goal is to provide a framework to build and distribute
agents using JXTA protocols. The framework exposes objects (graphic module, audio

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 19 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

module, neural network, fuzzy logic ...) to an agent developer, who can glue these mod-
ules together using a scripting language, currently JavaScript. An Agent is represented
by an XML document, and contains script code, which is interpreted by an Alsland (a
JXTA peer) in a secure manner.

Considering the evaluation criteria, AISLAND exhibits the following properties:

1. standard compatibility: it does not support FIPA standards.

2. agent features: communication between agents is done using the transport mod-
ule, but no documentation is provided. Weak mobility is possible (in the sense
that agent may migrate when not executing something). Not all states in the FIPA
agents life cycle are supported.

3. availability: the project is currently in the building prototype status. Source code is
available, last release is number 0.1.2 from February 2003.

4. documentation and development tools: documentation is being developed, cur-
rently it is minimal. A graphical GUI for creating and managing agents is available.

5. practical applications: none, since the project is in an early stage of development.

5.3 April Agent Platfor m

The April Agent Platform[3] is a lightweight FIPA-compliant agent platform developed
by the Imperial College and Fujitsu Laboratories Ltd., which has been written in April
(Agent Process Interaction Language). Basically, it consists of the agent management

system , the director y facilitato r and the message transpor t syste mfrom
the FIPA standards. These components are implemented as separate entities with their
own thread of execution. Agents communicate in an interoperable fashion using FIPA
ACL language over HTTP (other transport protocols are planned).

April presents the following properties:

1. standard compatibility: follows FIPA 2000 specifications.

2. agent features: communication is done through ICM (InterAgent Communication
System) over HTTP.

3. availability: last version is 0.9.0 from September 2002. It is available for the Linux
i386 operating systems under the GNU license. It requires the April programming
language and the ICM software to be installed. The graphical interface requires
the DialoX Graphical Environment.

4. documentation and development tools: available documentation is incomplete,
some aspects of the platform are not described. No mobility and persistence.
April includes a graphical interface to manage and control aspects of the platform
and its functionalities.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 20 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

5. practical applications: no application is described in the available documentation.

5.4 Comtec Agent Platfor m

Comtec Agent Platform[8] is a straightforward implementation of FIPA 97 Spec 1 (Agent
Management), Spec 2 (Agent Communication Language), Spec 3 (Agent/Software Inte-
gration) and FIPA 98 Spec 12 (Ontology Service) from Communication Technologies Inc,
Japan. Precisely its unique feature is the implementation of the FIPA Ontology Service
specification. Java is the foundation of the platform, and Kawa (a Scheme interpreter
written in Java) is used for building the agents.

Considering the evaluation criteria, Comtec has the following characteristics:

1. standard compatibility: some FIPA 97 and FIPA 98 specifications.

2. agent features: both inter-agent and inter-platform communication is based on
[IOP. No mobility is supported.

3. availability: it is a freeware software, available for Windows 95, Windows 98 and
Unix operating system. Latest known version is 3.0 from 1999.

4. documentation and development tools: minimal documentation in English. No
development tool is documented.

5. practical applications: no application is described in the available documentation.

5.5 FIPA-OS

FIPA-OS[11] is an open source implementation of the mandatory elements contained
within the FIPA specification for agent interoperability. In addition to supporting the FIPA
interoperability concepts, FIPA-OS also provides a component based architecture to
enable the development of domain specific agents which can utilize the services of the
FIPA Platform agents. FIPA-OS is an experimental agent framework, originated from
research at Nortel Networks Harlow Laboratories in the UK. It is fully implemented in
Java. The aim of FIPA-OS is to reduce the barriers in the adoption of FIPA technol-
ogy by supplementing the technical specification documents (available at Fipa.org) with
managed open source code.
Considering the evaluation criteria, FIPA-OS presents the following properties:

1. standard compatibility: it supports the majority of FIPA 2000 standards.

2. agent features: inter-agent communication is done in ACL over IIOP or RMI. Se-
cure communication is possible. Mobility has been implemented only in proto-
types. Agents are provided with an ontology, representing the known classification
of what exists, and how it exists, in a domain. It consists of a domain model and

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 21 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

domain querying facilities, that can use OIL, DAML, DAML+OIL, DAML-S inferene
languages. Thus, it supports reasoning in the Belief-Desire-Intention model, and
also Case Based Reasoning. Connections to databases is possible.

3. availability: FIPA-OS 2.2.0 of March 2002 is available through Emorphia Public
License (EPL), for Windows and Unix platforms with Java 2 installed. It requires a
Pentium 166Mhz processor, 64MB memory and 20MB free disk space.

4. documentation and development tools: good documentation, exemplars agents
code is available. No development tool is documented.

5. practical applications: prior to public release, FIPA-OS was being used within Eu-
ropean Collaborative projects: Cameleon and MAPPA. After that, it was used also
in other collaborative projects: FACTS, SHUFFLE, CRUMPET, PATTERNS NGNi -
SMONET, ONTOWERB. A pre-release of FIPA-OS has also been used in a number
of Universities (notably Imperial College and EPFL). A small footprint version of
FIPA-OS aimed at PDA’s and smart mobile phones has been developed by the
University of Helsinki.

5.6 Grasshoppe r

Grasshopper[15] is a mobile agent platform that is built on top of a distributed processing
environment. It is developed by IKV++ Technologies AG, Germany. It is built in Java 2,
and a web plugin is available for multi-platform execution.

Considering the evaluation criteria, Grasshopper presents the following properties:

1. standard compatibility: it support both FIPA 2000 specifications and OMG MASIF
standards by additional packages to the basic platform.

2. agent features: ACL is used for inter-agent communication, supporting synchronous
and asynchronous messages, dynamic message creation, and multicast facili-
ties over different transport protocols (sockets, RMI, [IOP), possible encrypted.
It provides external security using X.509 certificates, as well as internal security
based on the mechanisms provided by the JDK. Weak mobility is implemented by
a transport service, built on top of the communication service. Strong mobility can
be simulated. Persistency can be implicitly or explicitly specified for each agent,
according to policies. It provides a set of additional agent concepts (like place,
agency, region, etc) for the management and control of agents.

3. availability: Grasshopper 2.2 is distributed free of charge for non commercial use,
over Windows and Linux platforms. This version was released in January 2003.

4. documentation and development tools: very good documentation. Visual develop-
ment tools are also available.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 22 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

5. practical applications: Grasshopper has been used in several research projects:
ANIMA (Architecture Neutral Intelligent Mobile Agents), CAMELEON (Communi-
cation Agents for Mobility Enhancements in a Logical Environment of Open Net-
works), FACTS (FIPA Agents Communication Technologies and Services), MA-
RINE(Mobile Agent Environment for Intelligent Networks), MARINER (Multi-Agent
Architecture for Distributed-IN Load Control and Overload Protection) and M-
AMI(Mobile Intelligent Agents for Managing the Information Infrastructure).

5.7 JACK

JACK Intelligent Agent[16] is an agent oriented development environment integrated in
the Java programming language. JACK provides agent-oriented extensions to Java,
in the sense C++ provides object-oriented extensions to C. JACK also provides a de-
velopment environment and a set of library classes which support process of creating
JACK applications. The JACK source code is firstly compiled into regular Java code be-
fore being executed. JACK is a software developed and maintained by Agent Oriented
Software Pty Ltd, Australia.

JACK agents are built using the BDI (Belief, Desire and Intention) model: they have a
set of beliefs to represent what the agent "knows”; a set of desires/goals that represent
what the agent is trying to achieve; a set of intentions to achieve the agent’s current
goals; and finally a set of plans that are combinations of actions which achieve certain
outcomes or respond to events, and are used by the agent to further its intentions.
When an event occurs the agent: looks for relevant plans (plans that responds to this
type of event); then, for each relevant plan, the agent examines its appropriateness to
the situation the agent finds itself in; then the agent selects and starts executing the most
appropriate plan found. Additionally the agent performs ongoing reasoning functions to
decide what goal to pursue or alternatively what event to react to; how to pursue the
desired goal; when to suspend/abandon the goal, or change to another goal.

The agent may also vary its balance between reactive and deliberative behavior by
changing the amount of time allowed for deciding what to do next. This enables the
agent to be more or less sensitive to changes in the environment, that is, be more or
less "committed” to its current plan.

Considering the evaluation criteria, JACK has the following features:

1. standard compatibility: JACK is listed in the publicly available implementations
conforming the FIPA standards, but there are no available details of which stan-
dards are supported.

2. agent features: JACK agents can be organized into teams for modeling purposes
or for performing actual joint tasks. JACK has a language specification and object
oriented design targeted to allow easy extension for new agent models, such as
recognition of intentions, or transaction-based agents. It also provides a light-
weight and flexible communications model. By default JACK uses a fast TCP-

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 23 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

based protocol for communicating with other agents, back-end systems and GUIs.
Other protocols can be layered on top of this or can replace the default protocol
entirely. This can be used to provide secure communication between agents. No
mobility is supported. Internal security based on the mechanisms available in the
JDK.

3. availability: The latest release is JACK 4.1 from June 2003. JACK is implemented
entirely in Java and runs on Java versions 1.1.3 and later. The graphical compo-
nents require Java 2 v1.3 or later. JACK has been tested on the following plat-
forms: Windows 95/98/Me, Windows XP/2000/NT 4.5, Solaris 2.5, Solaris 2.6,
Solaris 7 (also called 2.7), Linux i386 (libc5 and libc6) and Mac OS X 10.1. JACK
agents can be developed and deployed on any platform for which a suitable Java
implementation is available. The JACK software package can be downloaded free
of charge for an evaluation period of 60 days.

4. documentation and development tools: very good documentation. Exercises and
some agents examples are also available. JACK includes a graphical development
environment and a debugging tool.

5. practical applications: It is claimed that JACK agents are being applied in a broad
scope of industries such as telecommunications, manufacturing, finance, air traffic
management, aerospace, etc. No details are given.

5.8 JADE

JADE (Java Agent DEvelopment Framework)[17] is a software framework that supports
through a middle-ware the implementation of distributed multi-agent systems with peer-
to-peer networking. It claims to comply with the FIPA specifications, and provides a set
of tools for the debugging and deployment phase. The agent platform can be distributed
across machines (which not even need to share the same OS) and includes graphical
tools supporting the deploying, debugging, management and monitoring phases. The
configuration can be also changed at run-time by moving agents from one machine to
another one, as and when required. JADE provides a homogeneous set of APIs that
are independent from the underlying network and Java version, but also includes other
APIs specific for J2EE, J2SE and J2ME.

JADE is completely implemented in Java language and the minimal system require-
ment is the version 1.2 of JAVA (the run time environment or the JDK). JADE is a trade-
mark of TILAB (formerly CSELT) and it has been jointly developed by TILAB (Telecom
Italia Labs) and AOT Labs at the University of Parma.

JADE presents the following properties:

1. standard compatibility: JADE is compliant with FIPA 2000 specifications, and also
works with CORBA (Orbacus).

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 24 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

2. agent features: The communication architecture offers flexible and efficient mes-
saging, where JADE creates and manages a queue of incoming ACL messages,
private to each agent; agents can access their queue via a combination of several
modes: blocking, polling, timeout and pattern matching based. The communica-
tion model has been implemented and its components have been clearly distincted
and fully integrated: interaction protocols, envelope, ACL, content languages, en-
coding schemes, ontologies and, finally, transport protocols. The transport mech-
anism, in particular, is like a chameleon because it adapts to each situation, by
transparently choosing the best available protocol. Java RMI, event-natification,
and IIOP are currently used. Most of the interaction protocols defined by FIPA are
already available and can be instantiated after defining the application-dependent
behavior of each state of the protocol. SL and agent management ontology have
been implemented already, as well as the support for user-defined content lan-
guages and ontologies that can be implemented, registered with agents, and au-
tomatically used by the framework. JADE has also been integrated with JESS, a
Java shell of CLIPS, in order to exploit its reasoning capabilities. Supports weak
mobility, secure communications and connection authentication.

3. availability: JADE is distributed in open source software license under the terms
of the LGPL (Lesser General Public License Version 2). The latest official version
is JADE 3.0b1 released on March 2003.

4. documentation and development tools: very good documentation. Tools for de-
bugging, deploying and managing agents are available.

5. practical applications: recently, JADE has been integrated with the results of the
LEAP project in a FIPA-compliant agent platform with reduced footprint and com-
patibility with mobile Java environments down to J2ME-CLDC, in collaboration with
Motorola, ADAC, Broadcom, BT, and Siemens. Also, JADE is being used by a
number of companies and academic groups, such as CNET, NHK, Imperial Col-
lege, IRST, KPN, University of Helsinky, INRIA, ATOS and many others.

5.9 Java Agent Service s API

The JAS (Java Agent Services) API[18] is a project for defining industry standard spec-
ification for APIs for deployment of agent platform-service infrastructures. It is intended
to form the basis for creating commercial grade applications based on FIPA specifica-
tions. The project consists of a Java API (in the javax.agent namespace) for deploying
open platform specifications that support the plugin of third party platform service tech-
nology. The API provides interfaces for message creation, message encoding, message
transport, directory and naming. The design is intended to ensure that a JAS based sys-
tem deployment remains transparent to shifts in the underlying technology. The project
also delivers a reference implementation of the API, including sample services for RMI,

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 25 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

LDAP and HTTP. The project is carried out by several companies, like Fujitsu, Sun, IBM,
HP, Spawar, InterX, Verizon, etc.
Following the evaluation criteria, JAS includes:

1. standard compatibility: it is an implementation of the FIPA Abstract Architecture
within the Java Community Process (JCP) initiative. It also implements other
FIPA standards like the FIPA Agent Communication Language Specification, the
FIPA Content Languages Specification, FIPA RDF Content Language Specifica-
tion, FIPA Message Transport Service Specification, etc.

2. agent features: JAS is a project for standard definition of agent APIs for the Java
language, and the standarization process has not yet finished. Therefore, it is not
possible to have a precise definition of the available services.

3. availability: the latest version of JAS was available for the public review process
until May 2002. There is no information about further steps of this projects.

4. documentation and development tools: very little documentation is publicly avail-
able.

5. practical applications: none.

5.10 Evaluatio n

Standard compatibility is not a necessary feature, since a standard FIPA agent platform
could be build on top of a non-standard lower layer. Anyway it is desirable in order
to simplify agent implementation, and to improve understandability of agent features in
the platform. In this sense, all platform except AISLAND supports some set of FIPA
specifications. Comtec does not support latest standards.

The SEWASIE architecture does not require extremely advanced agent features, as
has been described in previous sections. Secure communication, life cycle and white
pages services, and some facilities for mobility and persistency are the most important
characteristics. In order to facilitate the implementation of agents, the chosen platform
must present simple and reliable services for these features. For example, a BDI com-
plex model should be more an obstacle than an advantage for SEWASIE agent coding.
In this item, ADK, Grasshopper and JADE seem to be the best choices.

Availability is a more important characteristic. The chosen agent platform should
follow the requirements specified in [6]. Thus, it should be available both for Linux and
Windows operating systems, integration with Java code should be easy, and the tech-
nology should be publicly available. Moreover, we prefer platforms that offer a fully func-
tional product in a stable state (not a beta realease), but also are currently under further
development or improvement, and that give support to potential users. In this sense,
commercial platforms like Tryllian’s ADK and Agent Oriented Software’s Jack are the
best positioned, but they do not comply to the publicly available software requirement.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 26 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

Therefore, we consider FIPA-OS, Grasshopper and JADE as the best platform for this
item. AISLAND and JAS have not produced yet a fully functional version, April doesn’t
exhibit a seamless integration with Java code, and Comtec has not been updated since
more than three years.

The chosen platform must be well documented, so that people that are not used
to program agent code could use the platform services without much learning effort.
Development tools for programming, debugging, deploying and managing agents are
necessary not only for the agent code, but also for tuning several aspects in the SE-
WASIE architecture implementation. In order to provide a more accurate evaluation in
this point, practical tests should be carried out, so we consider only the presence or ab-
sence of these tools in the platform. ADK, Grasshopper, JADE and Jack are the platform
that present the best documentation, and some kind of tool for agent control.

Finally, the fact that a platform was selected for being used in other successful
projects is a fact that confirms its quality as a software product. FIPA-OS, Grasshopper
and JADE present documentation in this aspect, while commercial products like ADK
and Jack only claim the fact.

Taking all these aspects into consideration, we consider the following platforms to the
adequate for implementing the SEWASIE agent environmet and the SEWASIE agents:

1. JADE
2. Grasshopper
3. FIPA-OS

The platforms are listed in order of preference. The difference between Grasshopper
and JADE is not significant, mainly in the set of available development tools. But since
this evaluation was done only from the on-line documentation, we consider further em-
pirical tests can be made in order to take a final decision. These tests should focus on
the details of agent features and implementation, and usability of development tools.

Reference s

[1] Agent Development Kit. www.tryllian.com/technology/productl.html
[2] Aisland Project. aisland.jxta.org
[3] April Agent Platform. www.nar.fujitsulabs.com/aap

[4] T. Aura. On the structure of delegation networks. In PCSFW: Proceedings of The
11th Computer Security Foundations Workshop. IEEE Computer Society Press,
1998.

[5] Andreas Becks. Specification of the architecture of the monitoring agent / visual-
ization component. SEWASIE Deliverable D4.1, November 2002.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 27 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

[6] Sonia Bergamaschi. Specification of the common platforms, languages, methods,
and technological basis: first release. SEWASIE Deliverable D1.1, September
2002.

[7] Sonia Bergamaschi. Global architecture of the SEWASIE system. SEWASIE De-
liverable D1.3a, April 2003.

[8] Comtec Agent Platform. ias.comtec.co.jp/ap

[9] Yun Ding, Patrick Horster, and Holger Petersen. A new approach for delegation
using hierarchical delegation tokens. In Communications and Multimedia Security,
pages 128-143, 1996.

[10] J. E. Doran, S. Franklin, N. R. Jennings, and T. J. Norman. On cooperation in
multi-agent systems. The Knowledge Engineering Review, 12(3):309-314, 1997.

[11] FIPA-OS. fipa-os.sourceforge.net

[12] Foundation for Intelligent Physical Agents. Publicly available implementations of
FIPA specifications. www.fipa.org/resources/livesystems.html

[13] Foundation for Intelligent Physical Agents. FIPA abstract architecture specification.
FIPA 00001, 1996-2002.

[14] Foundation for Intelligent Physical Agents. FIPA agent management specification.
FIPA 00023, 1996-2002.

[15] Grasshopper. www.grasshopper.de

[16] JACK intelligent agents. www.agent-software.com
[17] JADE. jade.cselt.it

[18] JAS API. www.java-agent.org

[19] T. Magedanz, K. Rothermel, and S. Krause. Intelligent agents: An emerging tech-
nology for next generation telecommunications? In INFOCOM’'96, San Francisco,
CA, USA, 24-28 1996.

[20] Zoran Majkic. General framework for query reformulation. SEWASIE Deliverable
D3.1, February 2003.

[21] Zoran Majkic. Techniques for query reformulation, query merging, and information
reconciliation - part a. SEWASIE Deliverable D3.2a, May 2003.

[22] Christoph Quix. Specification of the architecture of the brokering agent. SEWASIE
Deliverable D4.1a, February 2003.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 28 of 29
Draft 0.2

SEWASIE project — IST FP5 Programme — 1ST-2001-34825

[23] Mareike Schoop. Specification of the architecture and conceptual design. SE-
WASIE Deliverable D5.1, November 2002.

[24] Sergio Tessaris. Specification of the tool for end-user query management. SE-
WASIE Deliverable D6.3, March 2003.

26/11/2003 1.6 - SEWASIE Architecture Agentization Page 29 of 29
Draft 0.2

