
User-driven Ontology Evolution Management

L. Stojanovic1, A. Maedche1, B. Motik1, N. Stojanovic2

1 FZI - Research Center for Information Technologies at the University of Karlsruhe,
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany

{Ljiljana.Stojanovic,Alexander.Maedche,Boris.Motik}@fzi.de

2 Institute AIFB, University of Karlsruhe,
76128 Karlsruhe, Germany

nst@aifb.uni-karlsruhe.de

Abstract. With rising importance of knowledge interchange, many industrial
and academic applications have adopted ontologies as their conceptual
backbone. However, industrial and academic environments are very dynamic,
thus inducing changes to application requirements. To fulfill these changes,
often the underlying ontology must be evolved as well. As ontologies grow in
size, the complexity of change management increases, thus requiring a well-
structured ontology evolution process. In this paper we identify a possible six-
phase evolution process and focus on providing the user with capabilities to
control and customize it. We introduce the concept of an evolution strategy
encapsulating policy for evolution with respect to user’s requirements.

1 Introduction

With rising importance of knowledge interchange, many industrial and academic
applications have adopted ontologies as their conceptual backbone. However,
business dynamics and changes in the operating environment often give rise to
continuous changes to application requirements, that may be fulfilled only by
changing the underlying ontologies [16]. This is especially true for WWW and
Semantic Web applications [2], that are based on heterogeneous and highly
distributed information resources and therefore need efficient mechanisms to cope
with changes in the environment.

Ontology evolution is the timely adaptation of an ontology to changed business
requirements, to trends in ontology instances and patterns of usage of the ontology-
based application, as well as the consistent management/propagation of these changes
to dependent elements. A modification in one part of the ontology may generate
subtle inconsistencies in other parts of the same ontology, in the ontology-based
instances as well as in depending ontologies and applications [11]. This variety of
causes and consequences of the ontology changes makes ontology evolution a very
complex operation that should be considered as both, an organizational and a
technical process [22]. It requires a careful analysis of the types of the ontology
changes [13] that can trigger evolution as well as the environment in which the whole
ontology evolution process is realized [25].

Although evolution over time is an essential requirement for successful application
of ontologies [6], methods and tools to support this complex task completely are
missing. This level of ontology management is necessary not only for the initial
development [8] and maintenance of ontologies, but is essential during deployment,
when scalability, availability, reliability and performance are absolutely critical [17].

In this paper we analyze ontology evolution requirements and present a novel,
process-oriented approach that fulfils them. We specifically focus on the problem that
ontology has to remain consistent under complex changes during evolution. As for
some changes there may be several different consistent states of the ontology, we
introduce the notion of evolution strategy allowing the user to customize the process
according to her needs. Consequently, user can transfer ontology in the desired
consistent state. Moreover, user can be suggested to make some additional changes in
the ontology that may yield ontology better suited for user’s needs and we discuss the
possibility of continuous ontology improvement by semi-automatic discovery of such
changes. Finally, we substantiate our discussion on ontology evolution by presenting
its current implementation within KAON1 framework.

The paper is organized as follows: Section 2 identifies the requirements for the
ontology evolution and derives an ontology evolution process that fulfils them.
Section 3 explores the complexity of the semantics of change problem and introduces
different evolution strategies that allow user to control and to customize the evolution
process. As a proof of the concept, section 4 contains a short description how
ontology evolution been realized within KAON framework. After a discussion of
related work, concluding remarks summarize the importance of the presented
approach and outline some future work.

2 Ontology Evolution Requirements

Based on our experience in building ontologies and using them in several applications
[25], we have formulated the following set of design requirements for ontology
evolution:

• It has to enable resolving the given ontology changes [7] and to ensure the

consistency of the underlying ontology and all dependent artifacts [24];
• It should be supervised allowing the user to manage changes more easily [28];
• It should offer advice to user for continual ontology refinement [18].

The first requirement is the essential one for any ontology evolution approach –

after applying a change to a consistent ontology, the ontology should remain in
consistent state. The second requirement complements the first one by presenting the
user with information needed to control changes and make appropriate decisions. The
last one states that potential changes improving the ontology may be discovered semi-
automatically from ontology-based data and through analysis of user’s behavior.

1 http://kaon.semanticweb.org

More careful analysis of these requirements (e.g. the changes have to be captured,
analyzed, applied and validated by the user) implies the necessity to consider the
ontology evolution problem as a composition of several subproblems realized in a
determined sequence. This sequence of activities, resolving ontology changes in a
composite way, is called the ontology evolution process. Consequently, the system,
i.e. software, which copes with the ontology evolution problem has to be process-
based, following currently the most popular programming paradigm in the business
software development.

In the remainder of this section, we analyze the above-mentioned requirements and

derive an ontology evolution process that fulfils them.

2.1 Resolving Changes While Keeping Consistency

Consistency requirement states that after applying and resolving changes in an
ontology already in a consistent state2, the ontology, its instances and dependent
ontologies/applications must remain in (another) consistent state. This requirement
encompasses two crucial aspects of the ontology evolution: enabling resolution of
changes and maintenance the consistency of the system, and may be realized through
following four phases as shown in Figure 1.

Change Representation. To resolve changes, they have to be identified and
represented in a suitable format [13, 20]. Elementary changes in the ontology are
derived from our ontology definition given in [25] specifying fine-grained changes
that can be performed in the course of ontology evolution. However, this granularity
of ontology evolution changes is not always appropriate. Often, intent of the changes
may be expressed on a higher level. For example, the may need to generate a common
superconcept sc of two concepts c1 and c2. He may bring the ontology into desired
state through successive application of a list of elementary changes, such as
‘Add_concept sc’, ‘Delete_SubConceptOf relation from c1 to its current parent’,
‘Add_SubConceptOf relation from c1 to sc’, ‘Delete_SubConceptOf relation from c2
to its current parent’ and ‘Add_SubConceptOf relation from c2 to sc’. However, this
has significant drawbacks:
• There is an impedance mismatch between the intent of the request and the way

the intent is achieved. It is required to create a superconcept of two concepts, but
one needs to translate this operation into five separate steps, making the whole
process error prone.

• A lot of unnecessary changes may be performed if each change is applied alone.
For example, removing sub-concept-of relation from c1 may introduce changes to
property instantiations that should be reversed when assign sub-concept-of
relation from c1 to sc.

2 A consistent state of an ontology is the state in which all constraints, which are defined on the

structure and content of an ontology are satisfied. An example of the structural constraints is
the need to define the domain and the range for each relation in the ontology. Content
constraints are related to the axioms in the ontology.

To avoid these drawbacks, it should be possible to express changes on a more
coarse level, with the intent of change directly visible. Composite changes,
representing a group of elementary changes applied together, are shown in the table 1.

Required
change

Source
ontology

Required
and

derived
changes

Ontology
instances

Applications

Dependent
ontologies

Suggestion for the
changes:
- distributed instances
- dependent ontologies
- dependent applications

Semantics
of change PropagationRepresentation Implementation

Modified
ontology
and local
instances

Request for
the change

Figure 1. Four Elementary Phases of Ontology Evolution Process

Table 1. Composite changes in the ontology

Composite change Description
Merge concepts Replace several concepts with one and aggregate all instances.
Extract subconcepts Split a concept into several subconcepts and distribute properties

among them.
Extract superconcept Create a common superconcept for a set of unrelated concepts and

transfer common properties to it.
Extract related concept Extract related information into a new concept and relate it to the

original concept.
Shallow concept copy Duplicate a concept with all its properties.
Deep concept copy Recursively apply shallow copy to all subconcepts of a concept.
Pull up properties Move properties from a subconcept to a superconcept.
Pull down properties Move properties from a superconcept to a subconcept.
Move properties Move properties from one concept to another concept.
Shallow property copy Duplicate a property with same domain and range.
Deep property copy Recursively apply shallow copy to all subproperties of a property.
Move Instance Moves an instance from one concept to another.

Semantics of Change. Application of an elementary change in the ontology can
induce inconsistencies in other parts of the ontology. We distinguish syntax and
semantic inconsistency. Syntax inconsistency arises when undefined entities at the
ontology or instance level are used or ontology model constraints are invalidated.
Semantic inconsistency arises when meaning of an entity is changed due to changes
performed in the ontology [29].

For example, removal of a concept which is the only element of domain set for
some property results in syntax inconsistency [9]. Resolving that problem is treated as
a request for a new change in the ontology, which can induce new problems that
cause new changes and so on. Therefore, one change can potentially trigger other
changes and so on. If an ontology is large, it may be difficult to fully comprehend the
extent and meaning of each induced change. The task of ‘semantics of change’ phase

is to enable resolution of induced changes in a systematic manner, ensuring
consistency of the whole ontology. To help in better understanding of effects of each
change, this phase should contribute maximum transparency providing detailed
insight into each change being performed. Some mechanisms used in this phase are
described in the section 3.

In the course of evolution, actual meaning of concepts often shifts to better
represent the structure of the real world. While some shifts of concept meaning are
performed explicitly, a meaning of a concept can sometimes shift implicitly through
changes in other parts of the ontology. For example, consider an ontology describing
a relationship between jaguars and persons. In this ontology the meaning of the
concept Jaguar is clear through the existence of the property eats that links Jaguars
and Persons – it is obvious that concept Jaguar stands for an animal from the feline
family. For any reason one may delete the concept Person, which may result in the
removal of the property eats as well. After the change is performed, the semantics of
concept Jaguar is not clear any more – is it a Jaguar cat or a Jaguar car? These kinds
of ambiguities can be eliminated in several ways. The simplest solution is by
introducing a superconcept Animal before the change is performed. However, if the
ontology is large, such issues may be easily overlooked because it is very hard to keep
the complete ontology structure in mind at once.

This problem can be avoided using a richer description [13] determining semantic
role of ontology entities. By attaching meta-information about e.g. essential properties
of a concept [29], deeper knowledge about concept meaning is provided. Moreover,
semantic ambiguities of ontology entities may be resolved through additional
documentation, such as who is the author of an entity, what is the purpose of
introducing an entity etc. Contrary to meta-information determining the semantic role
of ontology entities, “documentation” meta-information cannot be used for formal
consistency checking.

Change Implementation. In order to avoid performing undesired changes, before
applying a change to the ontology, a list of all implications to the ontology should be
generated and presented to the user [28]. He should be able to comprehend the list and
approve or cancel the change. When the changes are approved, they are performed by
successively resolving changes from the list. If changes are cancelled, the ontology
should remain intact. This is more elaborated in description of implementation in
section 4.

Change Propagation. When the ontology is modified, ontology instances need to be
changed to preserve consistency with the ontology [9]. This can be performed in three
steps. If the instances are on the Web they are collected in the knowledge base [14].
In the second step, modification of instances is performed according to the changes in
the ontology [23]. In the last step “out-of-date” instances on the Web are replaced
with corresponding “up-to-date” instances.

Ontologies often reuse and extend other ontologies. Therefore, an ontology update
might also corrupt ontologies that depend on the modified ontology and consequently,
all artifacts that are based on these ontologies. This problem can be solved by
recursive applying the ontology evolution process on these ontologies.

When an ontology is changed, applications based on the changed ontology may not
work correctly. An ontology evolution system has to recognize which change in the
ontology can affect the functionality of dependent applications [10, 21] and to react
correspondingly. More information about possible problems in this phase and ways
for solving them are given in [24].

2.2 User’s Management of Changes

There are numerous circumstances where it may be desired to reverse the effects of
ontology evolution, to name just a few:

• The ontology engineer may fail to understand the actual effect of the change and
approve the change that shouldn’t be performed.

• It may be desired to change the ontology for experimental purposes.
• When working on an ontology collaboratively, different ontology engineers may

have different ideas about how the ontology should be changed.

In order to enable recovering from these situations, we introduce the validation

phase in the ontology evolution process (see Figure 2). It enables validation of
performed changes and undoing them at user’s request. It is important to note that
reversibility means undoing all effects of some change, which may not be the same as
simply requesting an inverse change manually. For example, if a concept is deleted
from a concept hierarchy, its subconcepts will need to be either deleted as well,
attached to the root concept, or attached to the parent of the deleted concept.
Reversing such a change is not equal to recreating the deleted concept – one needs,
also, to revert the concept hierarchy into original state.

The problem of reversibility is typically solved by creating evolution logs. An
evolution log tracks information about each change in the system, allowing to
reconstruct the sequence of changes leading to current state of the ontology. With
each change evolution logs additionally associate following information [13] like
meta-information such as change description, cost of change, time of change, cause of
the change, identity of the change author, etc.

2.3 Continual Improvement

In ontology evolution we may distinguish two types of changes: top-down and
bottom-up, whose generation is part of the “capturing phase” in the ontology
evolution process. Top-down changes are explicit changes, driven, for example, by
top-manager who want to adapt the system to new requirements and can be easily
realized by an ontology evolution system. However, some changes in the domain are
implicit, reflected in the behavior of the system and can be discovered only through
analysis of its behavior. For example, if a customer group doesn’t contain members
for a longer period of time, it may mean that it can be removed. This second type of
change mined from the set of ontology instances are called bottom-up changes.

Another source of bottom-up changes is the structure of the ontology itself [18].
Indeed, the previously described “validation phase” results in an ontology which may
be in a consistent state, but contains some redundant entities or can be better
structured with respect to the domain. For example, multiple users may be working on
different parts of an ontology without enough communication. They may be deleting
subconcepts of a common concepts at different points in time to fulfill their
immediate needs. As a result, it may happen that only one subconcept is left. Since
classification with only one subclass beats the original purpose of classification, we
consider such ontology to have a suboptimal structure. To aid users in detecting such
situations, we investigated the possibilities of applying the self-adaptive systems
principles and proactively make suggestions for ontology refinements – changes to the
ontology with the goal of improving ontology structure, making the ontology easier to
understand and cheaper to modify.

2.4 The overall Ontology Evolution Process

Complete ontology process derived from our discussion of ontology evolution
requirements is presented in Figure 2. It has a cyclic structure, since validation of
realized changes may (automatically) induce new changes in order to obtain model
consistency or to satisfy users’ expectations. The first requirement from section 2 for
ontology consistency results in phases 2 to 5, the second requirement for user
supervision results in phase 6 and the third requirement for continual ontology
refinement results in phase 1.

3. Semantics
of change

5. Propagation

6. Validation

4. Implementation

2. Representation

1. Capturing

Business
requirements

Discovering

Figure 2. Ontology Evolution Process

3 Evolution Strategy

As mentioned, the role of “semantics of change” phase in ontology evolution process
if to figure out which elementary changes need to be performed for one change

request, e.g. deletion of a concept. If this were left to the user, evolution process
would be too error-prone and time consuming – it is unrealistic to expect that humans
will be able to comprehend entire ontology and interdependencies in it [28]. This
requirement is especially hard to fulfill if the rationale behind domain
conceptualization is ambiguous or if the user does not have the experience. There are
many ways to achieve consistency after a change request. For example, when a
concept from the middle of the hierarchy is being deleted, all subconcepts may either
be deleted or reconnected to other concepts. If subconcepts are preserved, then
properties of the deleted concept may be propagated, its instances distributed, etc.
Thus, for each change in the ontology, it is possible to generate different sets of
additional changes, leading to different final consistent states. Most of existing
systems for the ontology development [22] provide only one possibility for realizing a
change and this is usually the simplest one. For example, the deletion of a concept
always causes the deletion of all its subconcepts.

Thus, to resolve a change, the evolution process needs to determine answers at
many resolution points – branch points during change resolution where taking a
different path will produce different results. Each possible answer at each resolution
point is an elementary evolution strategy. Common policy consisting of a set of
elementary evolution strategies, each giving an answer for one resolution point, is an
evolution strategy and is used to customize the ontology evolution process. Thus, an
evolution strategy unambiguously defines the way how elementary changes will be
resolved [3]. Typically a particular evolution strategy is chosen by the user at the start
of the ontology evolution process.

To derive the set of resolution points within an evolution strategy, we started by
considering types of changes that may be applied to an ontology. Next we analyzed
what consequences can each change have on the ontology with respect to its
definition [25] and dependencies between ontology entities. We isolated changes that
can provoke syntax inconsistencies and, consequently, cannot be applied. For
example, “Add_SubConceptOf” change is not allowed if it causes an inheritance
hierarchy cycles. Further, we identified that some changes can generate the need for
subsequent changes, some of them offering different ways of resolution. For each
particular resolution way we defined an elementary evolution strategy. For each
elementary change we defined an algorithm containing resolution points encountered
during change resolution. Each resolution point represents a branching point, and each
elementary evolution strategy represents one possible branch. The choice of exactly
one elementary evolution strategy for each possible resolution point forms an
evolution strategy.

3.1 Evolution Strategy Example

Let us explain our approach through an example of deleting a concept C embedded in
a complex concept hierarchy. In order to keep the ontology in a consistent state,
following resolution points may be observed:

• what to do with orphaned subconcepts of C;
• what to do with properties that subconcepts of C inherit from C’s parents;

• what to do with all properties whose domain is C;
• what to do with the properties whose range is C;
• what to do with instances of C;
• what to do with instances of other concepts having relations with instances of C.

For each of these resolution points, there is a set of elementary evolution strategies

defining possible options. E.g., in case of the first resolution point, as illustrated in
Figure 3, orphaned subconcepts of C may be:

• connected to the parent concept(s) of C;
• connected to the root concept of the hierarchy;
• deleted as well.

Figure 3. Resolution Points for Deleting Concept C: a) Original ontology; b) Connection to the

parent concept; c) Connection to the root concept; d) Deletion of the subconcepts

Similarly we may elicit remaining elementary strategies for all mentioned
resolution points. The part of the algorithm for deletion of a concept with
corresponding resolution points and available elementary evolution strategies is given
in Figure 4.

3.2 Advanced Evolution Strategies

In real business the choice of how a change (e.g. deletion of a concept) should be
resolved may be based on characteristics of the final state of the ontology (e.g. make
depth of hierarchy as small as possible) or on characteristics of the process for
resolving changes itself (e.g. incur minimal cost of changes).

In order to enable such customization of the ontology evolution process, the user
may choose an advanced evolution strategy. It represents a mechanism to priorities
and arbitrate among different evolution strategies available in a particular situation,
relieving the user of choosing elementary evolution strategies individually.

Advanced evolution strategy automatically combines available elementary
evolution strategies to satisfy user’s criteria. We have identified the following set of
advanced evolution strategies:

• structure-driven strategy – resolves changes according to criteria based on the
structure of the resulting ontology, e.g. the number of levels in concept
hierarchy. This strategy follows the requirements of the real-word ontology-
based applications, e.g. MEDLINE3. MEDLINE requires a weekly update,
usually involving only supplementary concept records. However, concept
hierarchy is updated annually. This kind of changes is performed by keeping the
hierarchy minimal, because it alleviates, according to the authors of MEDLINE,
the understanding of the conceptualization.

• process-driven strategy – resolves changes according to process of changes
itself, for example optimized per cost4 of the process or per a number of steps
involved5. Determining what has to be change and how to change it requires a
deep understanding of how the ontology entities interact one with another. We
cannot expect that the user spends time explaining the reasons for all performed
changes and their ordering. One strategy enabling that the user can easily follow
and understand sequences of the changes is to perform the minimal number of
the updates.

• instance-driven strategy – resolves changes to achieve an explicitly given state
of the instances. This relieves the user of the necessary to newly add or
redistribute the instances, which can be time consuming and error prone task.
An efficient instance-driven evolution strategy should analyze the difference
between the initial and final state of instances and try to achieve final state in the
most efficient manner. The process to achieve that is based on logical inference
[5] and its description is out of scope for this paper.

• frequency-driven strategy – applies the most used or last recently used
evolution strategy.

Delete_Concept(C)
Select Case (what to do with orphaned subconcepts of C)

Case “connected to the parent concept(s) of C”: reconnect_to_parent(C)
Case “connected to the root concept of the hierarchy”: reconnect_to_root(C)
Case “delete subconcepts”: delete_subconcepts(C)

Select Case (what to do with properties of C)
Case “move properties to subconcepts”: move_properties_subconcepts(C)
Case “move properties to superconcepts”: move_properties_superconcepts(C)
Case “delete domain for properties”: delete_domain_properties (C)

Select Case (what to do with inherited properties of C)
Case “move inherited properties to subconcepts”: move_inherited_properties_subconcepts(C)

Select Case (what to do with the properties whose range is C)
Case “delete properties”: delete_property_range(C)
Case “change range to parent”: change_range_parent(C)

…

Resolution points Evolution strategies

Figure 4. Algorithm for Concept Deletion

3 http://www.nlm.nih.gov/pubs/factsheets/medline.html
4 Cost may be defined by the number of instances that must be updated.
5 The application of process-driven evolution with the minimal number of the changes for the

ontology shown in the figure 3a) results in solution (d). Since instances are missing from the
figure, a cost-based evolution strategy cannot be chosen.

4 Implementation

The Karlsruhe Ontology and Semantic Web framework (KAON) has been developed
at the University of Karlsruhe and is used as a basis for several ontology-enabled
research and industry projects. It’s primary goal is to establish a platform needed to
apply Semantic Web technologies [2] to e-commerce scenarios, knowledge
management, automatic generation of Web portals, E-Learning etc. In this section we
describe how ontology evolution has been realized within KAON. The simplified
conceptual architecture of KAON emphasizing points of interest related to ontology
evolution is presented in Figure 5.

 Other User Interface
Applications
and Services

Applications
& Services

KAON Access Interface

KAON-API

Middleware

Data and
Remote Services

OntoMat-SOEP Ontology and
Metadata

Engineering Tool

RDF API

KAON RDF Server

Evolution
Strategy

Reversibility
Services

Evolution
Logging

Persistence, Transactions, Security

Figure 5. Conceptual KAON Architecture with Respect to Ontology Evolution

Roughly, KAON components can be divided into three layers:

• Applications and Services Layer realizes UI applications and provides interfaces

to non-human agents. Among many applications realized, OntoMat-SOEP
provides ontology and metadata engineering capabilities. It realizes many
requirements related to ontology evolution and is described next in more detail.

• KAON API as part of the Middleware Layer is the focal point of KAON
architecture since it realizes the model6 of ontology based applications. The bulk
of requirements related to ontology evolution is realized in this layer and is
described in the next section.

• Data and Remote Services Layer provides data storage facilities. This layer also
realizes concurrency and transactional atomicity of updates. Further elaboration
of this layer is out of scope for this paper.

6 The term model refers to the model component of the Model-View-Controller architectural

pattern.

4.1 Ontology Evolution in KAON API

Before the ontology evolution process is started, a particular evolution strategy
must be configured. Changes to the ontology are performed by assembling elementary
and composite changes into a sequence. However, before the ontology is actually
updated, this sequence is passed to the present evolution strategy to perform steps
described in section 3 in the “semantics of change” phase, resulting in an extended
sequence of changes. To ensure atomicity of updates, either all or no change from the
extended sequence of changes should succeed, so validity of change sequence is
checked before any updates are actually performed. Transparency is realized by
presenting the extended sequence of changed to the user for approval. To further aid
the understanding of why some changes are performed, the evolution strategy may
group related elementary actions and provide explanations why particular change is
necessary, thus greatly increasing the chances that all side-effects of changes will be
properly understood. After changes are reviewed by the user, they are passed to the
ontology and executed, performing steps from the “change implementation” phase.

It is obvious that for each elementary change there is exactly one inverse change
that, when applied, reverses the effect of the original change. With such infrastructure
in place, it is not hard to realize the reversibility requirement: to reverse the effect of
some extended sequence of changes, a new sequence of inverse changes in reverse
order needs to be created and applied.

As mentioned in section 2, the evolution log needs to associate additional
information with each change. Effectively, the log is treated as an instance of a
special evolution ontology [13] consisting of concepts for each change, making it is
easy to add meta-information to log entries. Structure of the log may be easily
customized by editing the evolution ontology. Further, available services for
persisting ontology data may be used to persist the log, removing the need to devise
yet another type of persistent storage.

Evolution logging and reversibility services are provided as special services of
KAON API, allowing different applications reuse these powerful features. E.g.,
actions performed in one application may be easily reverted in another.

4.2 Ontology Evolution in KAON Applications

As mentioned in the previous section, ontology evolution is primarily realized
through KAON API. However, UI applications provide human-computer interaction
for evolution, whose primary role is to present change information in an orderly way,
allowing easy spotting of potential problems. Also, any application that changes the
ontology must realize the reversibility requirement in its user interface as well.
Currently evolution requirements are realized within the OntoMat-SOEP ontology
and metadata engineering tool, as follows:

• As shown in left part of Figure 6, users may set up the desired evolution strategy

which consists of four resolution points. For each resolution point the user must
choose appropriate elementary evolution strategy.

• Before changes are performed, their impact is reported to the user (the right part
of Figure 6). Presentation of changes follows the progressive disclosure
principle: related changes are grouped together and organized in a tree-like
form. The user initially sees only the general description of changes. If he is
interested in details, he can expand the tree and view complete information. He
may cancel the operation before it is actually performed.

• An unlimited undo-redo function is provided. Although is this function by large
the responsibility of the KAON API, the user interface is responsible for
restoring the visual context after an undo operation.

Figure 6. Ontology Evolution in KAON framework: Evolution Strategy Set-up and Ontology
Evolution User Interface in OntoMat-SOEP

A sample screenshot of OntoMat-SOEP is given in Figure 6. In this scenario, the
user requested to remove Student concept. The evolution strategy decided to push
property studiesAt of that concept to children. By opening a node in the tree, the user
can see what changes will actually be performed. Hence, the change information can
be viewed at different levels of granularity. Similarly, the strategy decided that
children of the concept will be attached to parent of the deleted concept. For each
child a detailed list elementary changes needed to achieve that is presented.

5 Related work

In the last decade there has been very active research in the area of ontology
engineering. The majority of research in this area is focused on construction issues.
However, coping with the changes and providing maintenance facilities require a
different approach. We cannot say that there exist commonly agreed methodologies
and guidelines for ontology evolution. Thus, there are very few approaches
investigating the problems of changing in the ontologies.

Heflin [9] points out that ontologies on the Web will need to evolve and he
provides a new formal definition of ontologies for the use in dynamic, distributed
environments. Although good design may prevent many ontological errors, some
errors will not be realized until the ontology is put to use. However, this problem as
well as the problem of the change propagation are not treated in the work of Heflin.
Moreover, the user cannot customize the way of performing the change and the
problem of the identification of the change is not analysed.

In contrast to the ontology evolution that allows access to all data only through the
newest ontology, ontology versioning allows access to data through different versions
of the ontology. Thus, ontology evolution can be treated as a part of the ontology
versioning mechanism that is analysed in [11]. Authors provide an overview of causes
and consequences of the changes in the ontology. However, the most important flaw
is the lack of a detailed analysis of the effect of specific changes on the interpretation
of data which is a constituent part of our work.

Oliver et al. [20] discuss the kinds of changes that occur in medical ontologies and
propose the CONCORDIA concept model to cope with these changes. The main
aspects of CONCORDIA are that all concepts have a permanent unique identifier.
Concepts are given a retired status instead of being physically deleted. Moreover
special links are maintained to track the retired parents and children of each concept.
However, this approach is insufficient for managing a change on the Semantic Web
especially while there are no possibilities to control the whole process.

In [16] the author presents the guiding principles for building consistent and
principled ontologies in order to alleviate their creation, the usage and the
maintenance in the distributed environments. Authors analyse the requirements for the
tool environments that enforces consistency. Many of these operational guidelines are
included (and implemented) in our solution.

[29] presents an extended ontology knowledge model that represents semantic
information about concepts explicitly. However, this enriched semantic is not used for
supporting evolution problems, but to describe what is known by agents in a multi-
agent system.

Other research communities also have influenced our work. The problem of
schema evolution and schema versioning support has been extensively studied in
relational and database papers ([1], [21]). In [18] authors discuss the differences that
steam from different knowledge models and different usage paradigms. Moreover,
research in ontology evolution can also benefit from the many years of research in
knowledge-based system evolution [3, 15]. The script-based knowledge evolution
[28] that identifies typical sequences of changes to knowledge base and represents
them in a form of scripts, is similar to our approach. In contrast to the knowledge-

scripts that allow the tool to understand the consequences of each change, we go step
further by allowing the user to control how to complete the overall modification and
by suggesting the changes that could improve the ontology.

6 Conclusion

In this paper we presented a novel approach for dealing with ontology changes due to
dynamic of the (business) environment. The approach is based on a six-phase
evolution process, which systematically analyses the causes and the consequences of
the changes and ensures the consistency of the ontology and depending artifacts after
resolving these changes. In order to enable the user to obtain the ontology most
suitable to her needs, we specifically focus on the possibilities to customize the
ontology evolution process. We identify two means to do that: (i) to enable the user to
set up one of predefined or advanced evolution strategies that are used for resolving
the changes and (ii) to suggest the user to generate some change, implied by the
analysis of the structure of the ontology, ontology instances or user behaviors in the
underlying ontology-based applications. In order to prove the reality of our approach,
we made the implementation within KAON framework.

The benefits of the proposed approach are manifold: (i) the user can customize the
ontology evolution process determining the evolution strategies or the final state of
the ontology according to the given task, (ii) the ontology evolution process enables
continuous ontology improvement by semi-automatic discovery of changes, (iii) the
evolution strategies and the validation phase help the user in better understanding of
effects of each change providing detailed insight into each change being performed, to
name but a few

Although our implementation is in an early phase and therefore the real evaluation
is missing, we made some experiments with one of our ontology-based applications,
particular the AIFB portal [25]. Comparison of time needed to resolve ”per-hand”
initiated change, shows the real necessity for the methodological support for the
ontology evolution, even for the very experienced ontology engineers. Moreover, the
detailed analysis of the possibility to use our approach in the case of highly-
distributed Web applications, such MEDLINE, shows many benefits of the presented
approach for the large-scale ontologies and motivates our further research in that
direction.

References

1. J. Banerjee, W. Kim, H.J. Kim, H. Korth, Semantics and implementation of schema
evolution in object-oriented databases, In proceedings of the Annual Conference on
Management of Data, pp- 211-322, ACM SIGMOD, May 1997.

2. T. Berners-Lee, XML 2000 – Semantic Web talk, 2000,
http//www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html, 2000.

3. P. Breche, M. Wörner, How to remove a class in an ODBS, In ADBS’95, 2nd
International Conference on Application Database, Santa Clara, California, 1995

4. A. Bultman, J. Kuipers and F. van Harmelen, Maintenance of KBS’s by domain
experts: The Holy Grail in Practice, Lecture Notes in AI, IEA/AIE’00, 2000.

5. S. Decker, M. Erdmann, D. Fensel and R. Studer, Ontobroker: Ontology based
access to distributed and semi-structured information, Meersman, R. et al. (Eds.),
Database Semantics: Semantic Issues in Multimedia Systems, pp. 351–369. Kluwer
Academic Publisher, 1999.

6. D. Fensel, Ontologies: Dynamics Networks of Meaning, In Proceedings of the the 1st
Semantic web working symposium, Stanford, CA, USA, July 30th-August 1st, 2001.

7. E. Franconi, F. Grandi, and F. Mandreoli, A semantic approach for schema evolution
and versioning in object-oriented databases, Proc. CL2000, 2000.

8. A. Gomez-Perez, Ontological engineering: A state of the art, Expert Update, 2(3):33-
43, Autumn 1999.

9. J. Heflin, Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment, Ph.D. Thesis, University of Maryland, College Park. 2001.

10. W. Hürsch, Maintaining consistency and behaviour of object-oriented systems during
evolution, In Proc. of the ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA '97), Vol.32 No. 10, pp1-21, 1997.

11. M. Klein and D. Fensel, Ontology versioning for the Semantic Web, Proc.
International Semantic Web Working Symposium, USA, July 30 - August 1, 2001.

12. A. Maedche and S. Staab, Ontology Learning for the Semantic Web, IEEE Intelligent
Systems, 16(2), March/April 2001. Special Issue on Semantic Web, 2001.

13. A. Maedche, L. Stojanovic, R. Studer, R. Volz: Managing Multiple Ontologies and
Ontology Evolution in Ontologging, In: Proceedings of the Conference on Intelligent
Information Processing, World Computer Congress 2002, Montreal, Canada, 2002.

14. A. Maedche, M. Ehrig, S. Handschuh, L. Stojanovic, R. Volz, Ontology-Focused
Crawling on Documents and Relational Metadata, In: Proceedings of the Eleventh
International World Wide Web Conference WWW-2002, (Poster), Hawaii, 2002

15. T. Menzis, Knowledge maintenance: The state of the art. The Knowledge
Engineering Review, 10(2), 1998.

16. D. McGuinness, Conceptual Modeling for Distributed Ontology Environments, In the
Proceedings of the ICCS 2000, August 14-18, Darmstadt, Germany , 2000.

17. D. McGuinness, R. Fikes, J. Rice, and S. Wilder, An environment for merging and
testing large ontologies, In Proceedings of KR-2000. principle of Knowledge
Representation and Reasoning. Morgan-Kaufman, 2000.

18. N. F. Noy, M. Klein, Ontology Evolution: Not the Same as Schema Evolution, SMI
technical report SMI-2002-0926, 2002.

19. N. F. Noy, D. McGuinness, Ontology Development 101: A Guide to creating your
first Ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-
05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March 2001

20. D. E. Oliver, Y. Shahar, M. A. Musen, and E. H. Shortliffe, Representation of change
in controlled medical terminologies, AI in Medicine,15(1):53–76, 1999.

21. J.F. Roddick, A Survey of Schema Versioning Issues for Database Systems,
Information and Software Technology, 37(7):383-393, 1996.

22. S. Staab, H.-P. Schnurr, R. Studer and Y. Sure, Knowledge Processes and
Ontologies, IEEE Intelligent Systems. 16(1), Jan./Feb. 2001. Special Issue on
Knowledge Management, 2001.

23. L. Stojanovic, N. Stojanovic and R. Volz, Migrating data-intensive Web Sites into the
Semantic Web, To appear: ACM Symposium on Applied Computing SAC, 2002.

24. L. Stojanovic, N. Stojanovic, S. Handschuh, Evolution of the Metadata in the
Ontology-based Knowledge Management Systems, In Proceedings of Experience
Management 2002, Berlin, 2002.

25. N. Stojanovic, A. Maedche, S. Staab, R. Studer and Y. Sure, SEAL — A Framework
for Developing SEmantic PortALs, ACM K-CAP 2001. October, Vancouver, 2001.

26. N. Stojanovic, L. Stojanovic, Searching for the Knowledge in the Semantic Web, The
15th International FLAIRS Conference, Pensacola, Florida, May 14-16, 2002.

27. N. Stojanovic, L. Stojanovic: Evolution in the ontology-based knowledge
management system. In: Proceedings of the European Conference on Information
Systems - ECIS 2002, Gdañsk, Poland, 2002.

28. M. Tallis, Y. Gil, Designing Scripts to Guide Users in Modifying Knowledge-based
Systems, AAAI/IAAI 1999: 242-249

29. V.A.M. Tamma, T.J.M Bench-Capon, A conceptual model to facilitate knowledge
sharing in multi-agent systems, In Proceedings of the OAS 2001. Montreal, pp. 69-
76, 2001.

