
Ontology versioning on the Semantic Web
Michel Klein and Dieter Fensel
Vrije Universiteit Amsterdam

De Boelelaan 1081a
1081 HV Amsterdam, the Netherlands

michel.klein/dieter@cs.vu.nl

Abstract Ontologies are often seen as basic building blocks for the Semantic Web,
as they provide a reusable piece of knowledge about a specific domain. However, those
pieces of knowledge are not static, but evolve over time. Domain changes, adaptations
to different tasks, or changes in the conceptualization require modifications of the on-
tology. The evolution of ontologies causes operability problems, which will hamper
their effective reuse. A versioning mechanism might help to reduce those problems,
as it will make the relations between different revisions of an ontology explicit. This
paper will discuss the problem of ontology versioning. Inspired by the work done
in database schema versioning and program interface versioning, it will also propose
building blocks for the most important aspects of a versioning mechanism, i.e., ontol-
ogy identification and change specification.

1 Introduction

Ontologies are often seen as basic building blocks for the Semantic Web, as they provide a
reusable piece of knowledge about a specific domain. However, those pieces of knowledge
are often not static, but evolve over time. Domain changes, adaptations to different tasks,
or changes in the conceptualization require modifications of the ontology. The evolution of
ontologies causes operability problems, which will hamper the effective reuse.

Support to handle those changes is needed. This is especially important in a decentral-
ized and uncontrolled environment like the web, where changes occur without attunement.
Much more than in an controlled environment, this may have unexpected and unknown re-
sults. With the rise of the Semantic Web, those uncontrolled changes will have even more
impact, becausecomputerswill use the data. There are no longer humans in the chain that —
using a vast amount of background knowledge and implicit heuristics — can spot erroneous
combinations due to unexpected changes.

The problem is even worse, because there are a lot of dependencies between data sources,
applications and the ontologies. Changes to the latter will thus have far-reaching side effects.
It is often not practically possible to synchronism the changes to an ontology with modifica-
tions to the applications and data sources that use them. Therefore, a versioning methodology
is needed to handle revisions of ontologies and the impact on existing sources.

In this paper, we will explore the problem of ontology versioning and we will propose
some elements of a versioning framework. We will first discuss the nature of ontology ver-
sioning in Section 2. Because compatibility is a key issue in versioning, Section 3 contains an

michel.klein/dieter@cs.vu.nl

Michel Klein and Dieter Fensel

analysis of the compatibility between schema’s and conforming data. To come up with con-
crete requirements for a versioning framework, we will look at current practices for handling
ontology change in Section 4, in which we will also formulate those requirements. Section 5
will eventually present the proposed baseline for an ontology versioning framework on the
web. It will mainly concentrate on identification and referring issues. Section 6 concludes the
paper and sketches the directions for further research. Finally, the appendix shows how this
ideas may be implemented in RDF Schema and / or DAML+OIL.

2 The problem: versioning of ontologies

Before we can investigate the solutions for ontology versioning, we first have to take a closer
look at what it actually is. In a general sense, ontology versioning just means that there are
multiple variants of an ontology around. In practice, those variants often originates from
changes to an existing variant of the ontology and thus form a derivation tree. It is also pos-
sible that different “versions” of ontologies of the same domain are independently developed
and donot have a derivation relation. In this case, however, we will not use the word “ver-
sion”, but we will see the variants as separate ontologies that describe the domain from a spe-
cific viewpointor perspective. In our view, ontology versioning is closely related to changes
in ontologies.

We define ontology versioning asthe ability to handle changes in ontologies by creating
and managing different variants of it. To achieve this ability, we need a methodology with
methods to distinguish and recognize versions, and with procedures for updates and changes
in ontologies. This also implies that we should keep track of the relationships between ver-
sions.

Focused on ontologies, we can say that aversioning methodologyprovides mechanism
to disambiguate the interpretation of concepts for users of the ontology variants, and that it
makes the compatibility of the variants explicit. The extend of the changes determines the
compatibility between the versions. This implies that the semantic impact of changes should
be examined. The central question that a versioning methodology answers is: how to reuse
existing ontologies in new situations, without invalidating the current usage.

2.1 Causes of ontology changes

A versioning methodology for ontologies copes with changes inontologies. To examine the
causes of changes, we will have to look at the nature of ontologies. According to Gruber
(1993), an ontologies is aspecification of a shared conceptualization of a domain. Hence,
changes in ontologies are caused by either:

1. changes in the domain;

2. changes in the shared conceptualization;

3. changes in the specification.

The first type of change is often occurring. This problem is very well known from the area of
database schema versioning. Ventrone and Heiler (1991) sketches seven different situations
in which changes in a domain (domain evolution) require changes to a database model. An

alain
According to Gruber(1993), an ontologies is a specification of a shared conceptualization of a domain. Hence,changes in ontologies are caused by either:1. changes in the domain;2. changes in the shared conceptualization;3. changes in the specification.The first type of change is often occurring. This problem is very well known from the area ofdatabase schema versioning. Ventrone and Heiler (1991) sketches seven different situationsin which changes in a domain (domain evolution) require changes to a database model. An

Ontology versioning on the Semantic Web

example of this type of change is the merge of two university departments: this is a change in
the real world, which requires that an ontology that describes this domain is modified, too.

Changes in the shared conceptualization are also frequently happening. It is important to
realize that asharedconceptualization of a domain is not a static specification that is pro-
duced once in the history, but has to be reached over time. Fensel (2001) describes ontologies
as dynamic networks of meaning, in which consensus is achieved in a social process of ex-
changing information and meaning. This view attributes a dual role to ontologies in informa-
tion exchange: they provide consensus that is both apre-requisitefor information exchange
and aresultof this exchange process.

A conceptualization can also change because of the usage perspective. Different tasks
may imply different views on the domain and consequently a different conceptualization.
When an ontology is adapted for a new task or a new domain, the modifications represent
changes to the conceptualization. For example, consider an ontology about traffic connec-
tions in Amsterdam, with concepts like roads, cycle-tracks, canals, bridges and so on. When
the ontology is adapted from a bicycle perspective to a water transport perspective, the con-
ceptualization of a bridge changes from a remedy for crossing a canal to a time consuming
obstacle1.

Finally, a specification change is a kind of translation, i.e., a change in the way in which
a conceptualization is formally recorded. Although ontology translation is an important and
non-trivial issue in many practical applications, it is less interestingfrom a versioning per-
spective, for two reasons. First, an important goal of a translation is to retain the semantics,
i.e., specification variants should be equivalent2 and they thus only cause syntactic inter-
operability problems. Second, a translation is often created to use the ontology in an other
context (i.e., an other application or system), which heavily reduces the importance of inter-
operability questions. Therefore, we will leave specification changes alone and concentrate
on support for changes in the semantics of an ontology, caused by either domain changes or
conceptualization changes.

2.2 Consequences of the change

Versioning support is necessary because changes to ontologies may cause incompatibilities,
which means that the changed ontology can not simply be used instead of the unchanged
version. There are several type of things that may depend on an ontology. Each of these
dependencies may cause a different type of incompatibility.

• In the first place, there is the data that conforms to the ontology. In a semantic web, this
can be web pages of which the content is annotated with terms from an ontology. When
an ontology is changed, this data may get an different interpretation or may use unknown
terms.

• Second, there are other ontologies that use the changed ontology. This may be ontologies
that are built from the source ontology, or that import the ontology. Changes to the source
ontology may affect the resulting ontology.

1Actually, for many people this meaning is also an element of the bicycle perspective.
2Although in practice a translation often implies a change in semantics, possibly caused by differences in

the representation languages. See for a exploration of ontology language differences and mismatches (Corcho
and Ǵomez-Ṕerez, 2000) and (Klein, 2001).

alain
example of this type of change is the merge of two university departments: this is a change inthe real world, which requires that an ontology that describes this domain is modified, too.

alain
Changes in the shared conceptualization are also frequently happening. It is important torealize that a shared conceptualization of a domain is not a static specification that is producedonce in the history, but has to be reached over time. Fensel (2001) describes ontologiesas dynamic networks of meaning, in which consensus is achieved in a social process of exchanginginformation and meaning. This view attributes a dual role to ontologies in informationexchange: they provide consensus that is both a pre-requisite for information exchangeand a result of this exchange process.

alain
A conceptualization can also change because of the usage perspective. Different tasksmay imply different views on the domain and consequently a different conceptualization.When an ontology is adapted for a new task or a new domain, the modifications representchanges to the conceptualization. For example, consider an ontology about traffic connectionsin Amsterdam, with concepts like roads, cycle-tracks, canals, bridges and so on. Whenthe ontology is adapted from a bicycle perspective to a water transport perspective, the conceptualizationof a bridge changes from a remedy for crossing a canal to a time consumingobstacle1.

alain
Finally, a specification change is a kind of translation, i.e., a change in the way in whicha conceptualization is formally recorded. Although ontology translation is an important andnon-trivial issue in many practical applications, it is less interesting from a versioning perspective,for two reasons. First, an important goal of a translation is to retain the semantics,i.e., specification variants should be equivalent2 and they thus only cause syntactic interoperabilityproblems. Second, a translation is often created to use the ontology in an othercontext (i.e., an other application or system), which heavily reduces the importance of interoperabilityquestions. Therefore, we will leave specification changes alone and concentrateon support for changes in the semantics of an ontology, caused by either domain changes orconceptualization changes.

Michel Klein and Dieter Fensel

• Third, applications that use the ontology may also be hampered by changes to the on-
tology. In the ideal case, the conceptual knowledge that is necessary for an application
should be merely specified in the ontology; however, in practice applications also use an
internal model. This internal model may become incompatible with the ontology.

All things considered, we see that a versioning methodology is necessary to take care of
the following relations:

• between succeeding revisions of one ontology;
• between the ontology and:

– instance data;
– related ontologies;
– related applications.

In the rest of the paper, we will mainly concentrate on the relation betweendata sourcesand
related ontologies. This has two reasons. First, this specific dependency is occurring very
frequently at the Semantic Web and therefore forms an urgent problem. Second, because the
other dependencies can be considered as more complex cases of the first dependency, we will
have to start with the first case to come to the more complex situations in future work.

3 Analysis of compatibility

In Section 2, we discussed the relations between ontologies and depending data sources in
general. In this section, we will take a closer look at the compatibility of changed ontologies
and data sources.

We can imagine that — when the Semantic Web evolves — there will be various versions
of many ontologies around. There will also be a lot of web pages and applications that use
(or are intended to use) a specific version of the ontology. Consequently, there are a number
of (possible incompatibility) ways of combining versions of ontologies with versions of data
sources. Basically, there are three ways to relate ontology versions with data sources: (1)
using the intended version of the ontology for a data source, (2) using a newer version of the
ontology, and (3) using an older version of the ontology. As the first type of of combination
is naturally compatible, we thus have to explore the incompatibility of ontologies and data
sources in two directions, which are illustrated in Figure 1. The terms that we use are known
from the database schema versioning literature Roddick (1995).

• prospective use: the use of data sources that conform to a previous version of the ontology
via a newer version of the ontology (i.e. view the data from a newer perspective).

• retrospective use: the use of data sources that conform to a newer version of the ontology
via a previous version of the ontology (view the data from an older perspective).

Based on these directions of use, we can now categorize the compatibility of ontology re-
visions into different types. In this categorization, we examine whether it is valid to use a
revision of an ontology on theset of all possible instancesof an other revision of the ontol-
ogy. In other words, we assume that the data source that conforms to a specific version of
the ontology uses the whole ontology, i.e., all concepts and relations. From a compatibility
perspective, this is a worst case scenario. Table 1 shows the types of compatibility.
We can describe the types of revisions as follows:

Ontology versioning on the Semantic Web

Ontology
version 1

Ontology
version 2

Ontology
version 3

Ontology
version 4

datasource datasource datasource datasource

conforms to conforms to conforms to conforms to

prospective use

Ontology
version 1

Ontology
version 2

Ontology
version 3

Ontology
version 4

datasource datasource datasource datasource

conforms to conforms to conforms to conforms to

retrospective use

Figure 1: Two examples of prospective and retrospective use of ontologies.

prospective use valid
yes no

retrospective
use valid

yes full compatible upward compatible
no backward compatible incompatible

Table 1: Categorization of compatibility

• full compatible revisions (upward and backward): the semantics of the ontology is not
changed, e.g. syntactic changes or updates of natural language descriptions; this type of
change is compatible in bothprospectiveuse andretrospectiveuse.

• backward compatible revisions: the semantics of the ontology are changed in such a
way that the interpretation of data via the new ontology is the same as when using the
previous version of the ontology, e.g. the addition of an independent class; this type of
change is compatible inprospectiveuse;

• upward compatible revisions: the semantics of the ontology is changed is such a way
that an older version can be used to interpret newer data sources correctly, e.g. the removal
of an independent class; this revision is compatible inretrospectiveuse.

• incompatible revisions: the semantics of the ontology is changed in such a way that the
interpretation of old data sources is invalid, e.g. changing the place in the hierarchy of a
class; this type of change is incompatible in bothprospectiveuse andretrospectiveuse.

Notice that both backward compatibility and upward compatibility are transitive: when
the changes fromv1 to v2 as well as the changes fromv2 to v3 are backward compatible,
then the changes fromv1 to v3 are also backward compatible.

Consequently, if we know that all subsequentrevisionsto an ontology up to a certain
version are backward compatible, it is also possible to name the resulting version of the
ontology itselfbackward compatible. However, it is never allowed to call a version of an
ontologyupward or full compatible, because the semantics of future versions are not known
beforehand! It is always possible that new versions of ontologies will introduce new things
that cannot correctly be interpreted via older ontology versions. Thus,backward compatibility
can be a characteristic of an ontology, butupward or full compatibilitycan not.

In the characterization above, we looked at compatibility from a theoretic perspective,
considering data sources that consist of all possible instances of the ontology to which they

Michel Klein and Dieter Fensel

conform. As we already said, this is a worst case scenario. In practice, much more combina-
tions of ontology versions and data sources yield a valid interpretation of the data than can be
assumed from the schema in Table 1.

For example, although the table depicts that an incompatible revision can not be used for
prospective interpretation (to interpret data sources that conforms to an older version), it is
very well possible that a specific prospective use is valid, i.e., that the ontology can be used
to correctly interpret some data that is committed to a previous version. This occurs when the
ontological commitmentof a data source, i.e., that part of the ontology that is actually “used”
by a data source3, is a subset of the complete “ontology” that is not affected by the revisions.

It is very much required that versioning methodologies and techniques for the Semantic
Web exploit this “practical” compatibility where possible. That is, the techniques should not
only determine whether a specific combination an ontology version and a data source version
provides a valid interpretationin general, but — even when the combination is not gener-
ally valid — try to use as much knowledge as possible. We think that such techniques for
“maximal exploitation” are essential for the development of the Semantic Web.

4 Current practices and requirements

To come up with concrete requirements for an ontology versioning mechanism on the web,
we will now look at the current practices for managing changes in web-ontologies. We will
describe a few typical scenarios for ontology change and explore the effects of those scenarios
on two examples.

Currently, there is no agreed versioning methodology for ontologies on the web. However,
in an decentralized and uncontrolled environment like the web, changes are certainly needed
and do occur! When we look at the current practices, we can sketch several scenarios for
ontology changes.

1. The ontology is silently changed; the previous version is replaced by the new version
without any (formal) notification.

2. The ontology is visibly changed, but only the new version is accessible; the previous
version is replaced by the new version.

3. The ontology is visibly changed, and both the new version and the previous version are
accessible.

4. The ontology is visibly changed, both the new version and the previous version are ac-
cessible, and there is an explicit specification of the relation between concepts of the new
version and the previous version.

4.1 Simple example

To come to concrete requirements for a versioning methodology, we will now look at the
effects of these scenarios on the compatibility when an ontology changes. As an example we
use an ontology of the education system in the Netherlands and web pages that are annotated
with this ontology.

3This definition and the use of the term “ontology” is quite sloppy.

Ontology versioning on the Semantic Web

In the distant past, there was only one type of higher education, which was called an
“University”. A small part of an ontology that describes this looks as follows:4

class-defEducation
class-defAcadamicEducation

subclass-ofEducation
class-defHigher-Education-Institute
class-defUniversity

subclass-ofHigher-Education-Institute
slot-constraint type-of-education

has-valueAcadamicEducation

Many years later, a new type of higher-education was introduced, which provides profes-
sional education. This type was called “HBO”. The above ontology has to be extended with
the following three definitions. This addition is a monotonic extension to the ontology and
the new version can be considered as being backward compatible with the first version.

class-defProfessionalEducation
subclass-ofEducation

disjoint AcadamicEducation ProfessionalEducation
class-defHBO

subclass-ofHigher-Education-Institute
slot-constraint type-of-education

has-valueProfessionalEducation

Let us suppose that there are a lot of web pages about education in the Netherlands around,
which are annotated using the first version of the ontology. We will now try to interpret
this information using the second version of the ontology (prospective use). We describe the
effects of the change for each of the scenarios that are listed above.

Ex. 1, ad 1 When we have completely no clue that the ontology is changed, we encounter —
in this backward compatible case — no problems at all. The terms that are used
in the data source are the same as those in the ontology, and they also have the
same meaning. A “University” on a web page is correctly interpreted.

Ex. 1, ad 2 When we know that the ontology is changed, but we don’t know anything about
the previous version of the ontology, nothing is sure anymore! Definitions could
be changed and we can not derive that the term “University” on a web page (using
ontology version 1) is the same as our definition.

Ex. 1, ad 3 In case the previous ontology can be accessed, we can compare and relate the
ontologies, and see whether the changes interferes with the semantics of existing
terms. In this case, we could have derived that the concept of ”University” is not
changed, and that the data sources can still correctly be interpreted.

4We use the “presentation syntax” of OIL (Fensel et al., 2000a) to represent the ontology; the interpretation
is more or less straightforward. We could also have used DAML+OIL, but this would have required much more
space.

Michel Klein and Dieter Fensel

Ex. 1, ad 4 If the relation between the concepts is explicitly specified, it would be clear that
the the new version is backward compatible with the previous version, because
the new version only adds a concepts. We could then safely conclude that the
interpretation of previous data is still valid.

Notice that in the last three scenarios it is important to know which version of the ontology is
used to annotate the data sources. This should me made explicit in some way.

4.2 More complicated example

In the year 2000, the Dutch government decided that both professional and academic insti-
tutes for higher-education are allowed to call themselves “University”. This implies a new
change to our ontology, resulting in a third version. This version is in general incompatible
with the previous version. In the new version, the definition of “University” is changed to:

class-defUniversity
subclass-ofHigher-Education-Institute
slot-constraint type-of-education

has-value(ProfessionalEducation or AcadamicEducation)

Let us again look at the consequences of this change with current versioning practices:

Ex. 2, ad 1 When we do not know that the ontology is changed, we use an other interpretation
of a “University” than intended. Because in this case, a University-v1 is a subclass
of University-v2, the interpretation of data is not incorrect, but also not complete.
We cannot interpret that every “University” in the data sources actually provide
academic education.

Ex. 2, ad 2 Same problem as with the change in the previous example.

Ex. 2, ad 3 If we have both version of the ontologies, we could compare them and see that
only the definition of “University” is changed. We can see that both versions are
subclasses of “Higher-Education-Institute”, and interpret all instances of the old
“University” as instance of “Higher-Education-Institute”. This is again correct
but incomplete. It ignores some knowledge that is available. Notice that, in this
case, smart agents (agents capable of performing OIL classification) can derive
that both Universities and HBOs are subclasses of new universities. Figure 2
shows5 the classes in our example before and after classification.

Ex. 2, ad 4 In the case in which the relations between the concepts in the two ontologies
are explicitly specified, it would tell us that “University” in the new ontology
subsumes both “HBO” and “University” in the previous version.

It is also worth to notice that, in the last two scenarios, it is necessary to be able to distinguish
between the different version of a concept. As the definition of “University” is changed, we
need a separate identifier for each version of the definition. Otherwise, it is not possible to
relate the previous and new definition to each other. In Figure 2, this is temporarily solved by
appending “-v2” to the concept name.

5Modeled with the OILed tool,http://img.cs.man.ac.uk/oil/ .

http://img.cs.man.ac.uk/oil/

Ontology versioning on the Semantic Web

Figure 2: The hierarchy of the example ontology before and after classification with FaCT.

4.3 Observations

Based on the examples above, we can make a few observations. First, changing an ontology
without any notificationmayresult in a correct interpretation of the data. This is the case when
the modification in the ontology does not affect the existing definitions, i.e., when the change
is a monotonic extension. Heflin and Hendler (2000) show that the addition of concepts or
relations are such extensions. When used on a data source, ontologies that are extended in
this way yield the same perspective as when the original ontology is used. The interpretation
is also valid when the revised concepts subsumes the original concepts. However, although
the interpretation is correct in this case, it is only partial: not all the knowledge is exploited.

Because many changes in ontologies consist just of additions of concepts, it is under-
standable that the first scenario of ontology change is sometimes used. It is, however, not
difficult to think of an change that — in this scenario — will result in aninvalid interpreta-
tion, e.g., every change that restricts the extension of a class. This scenario should therefore
be prevented.

Second, we see that it can be beneficial to have access to older versions of the ontology.
This allows to compare the definitions and judge the validness of definitions used with other
versions the data. In case of a cleanly modeled ontology,6 it is even possible to have some
automate support for this, e.g. by using the FaCT classifier7.

As a third observation, we see knowledge about the relation concepts of different ver-
sions may yield in a partial but correct interpretation of the data. This relation can either be

6That is, the definitions of concepts should state whether they are necessary or necessary and suffi-
cient; in Description Logic parlance: primitive or defined. This way of modeling is more naturally in OIL
than in DAML+OIL, as the second requires that a defined concept is modeled as an equivalence to a cou-
ple of restrictions. It is therefore questionable whether in practice DAML+OIL ontologies can benefit much
from the classification support. See also the discussion on this topic on the RDF-Logic mailing-list:http:
//lists.w3.org/Archives/Public/www-rdf-logic/2001Mar/0000.html .

7http://www.cs.man.ac.uk/˜horrocks/FaCT/

http://lists.w3.org/Archives/Public/www-rdf-logic/2001Mar/0000.html
http://lists.w3.org/Archives/Public/www-rdf-logic/2001Mar/0000.html
http://www.cs.man.ac.uk/~horrocks/FaCT/

Michel Klein and Dieter Fensel

manually specified, or can partly be derived, as described in the previous paragraph. For the
specification of the relation between concepts of different versions, we need a identification
mechanism for individual concepts of an ontology version. If we cannot refer to a specific
version of a concept, this specification is not possible.

4.4 Requirements for versioning framework

Now we have explored the problems around ontology versioning, we can formulate require-
ments and wishes for a versioning methodology. We will first define the general goal for a
versioning framework.

A versioning methodology should provide mechanisms and techniques to manage
changes to ontologies, while achieving maximal interoperability with existing data
and applications. This means that it should retain as much information and knowledge
as possible, without deriving incorrect information.

Notice that this is much stricter than just specifying whether it is valid to use a certain version
of an ontology with a data source.

The general goal can be detailed in a number of more specific requirements. We impose
the following requirements on a versioning framework, in increasing level of difficulty:

• for every use of a concept or a relation, a versioning framework should provide an unam-
biguous reference to the intended definition; (identification)

• a versioning framework should make the relation of one version of a concept or relation
to other versions of that construct explicit; (change specification)

• a versioning framework should — as far as possible — automatically translate and relate
the versions and data sources, to enable transparent access. (transparent evolution)

5 Building blocks for a versioning methodology

After we have stated the problems and requirements, we will now provide elements of a
versioning methodology. We will concentrate our discussion on ontology identification and
change specification.

5.1 Ontology identification on the web

Identity of ontologies The first question that has to be answered when we want to identify
versions of an ontology on the web is: what is the identity of an ontology? This is not as trivial
as it seems. In Section 3, we already anticipated this question by stating that syntactic changes
and updates of natural language descriptions are fully compatible revisions. However, this is
very debatable! If an ontology is seen as a specification of a conceptualization, then every
modification to that specification can be considered a new conceptualization of the domain.
In that case, the descriptions specify different concepts, which areper definitionnot equal.

Looking at this from another perspective, one might regard an ontology primarily as a
conceptualization, which is represented as complete as possible in a specification. In this

Ontology versioning on the Semantic Web

case one could argue that an update to a natural language description of a concept is not a
semantic change, but just a refined description of the same conceptualization.

In this philosophical debate, we take the following (practical) position. We assume that an
ontology is represented in a file on the web. Every change that results in a different character
representation of the ontology constitutes a revision. In case the logical definitions are not
changed, it is the responsibility of the author of the revision to decide whether this revision
is semantic change and thus forms an new conceptualization with its own identity, or just an
change in the representation of the same conceptualization.

Identification on the web The second question is: how does this relate to web resources
and there identity? This is brings us into the very slippery debate on the meaning of URIs,
URNs and resources (see Champin et al., 2001, and the discussion on the RDF Interest
mailing-list that followed its publication). The main questions in this discussion are: what
is a resource and how should it be identified. However, we will circumvent these questions
and approach the problem from another direction: are the “entities” in our domain (i.e., the
entities in the domain of ontology versions, e.g. a conceptualization, a revision, a specifica-
tion) resources and can we give them an identifier?

These questions are relatively easy to solve! According to the definition of Uniform Re-
source Identifiers (URI’s) (defined in Berners-Lee et al., 1998), “a resource can be anything
that has identity”. In (Berners-Lee, 1996) is stated: a “resource” is a conceptual entity (a little
like a Platonic ideal). Both definitions comprise our idea of an ontology. Hence, an ontology
can harmlessly be regarded as a resource. An URI, which “is a compact string of characters
for identifying an abstract or physical resource” (Berners-Lee et al., 1998) can be used to
identify the resources. Notice that URI’s provide a general identification mechanisms, as op-
posed to Uniform Resource Locators (URL’s), which are bound to thelocationof a resource.

The important step in our proposed method is to separate the identity of ontologies com-
pletely from the identity of files on the web that specify the ontology. In other words, the
class of ontology resources should be distinguished from the class of file resources. As we
have seen above, a revision — which is normally specified in a new file —mayconstitute a
new ontology, but this is no automatism. Every revision is a new file resource and gets a new
file identifier, but does not automatically get a new ontology identifier.

Notice that we are at this point not compliant with the RDF Schema specification (Brick-
ley and Guha, 2000), which states:8

this specification recommends that a new namespace URI should be declared when-
ever an RDF schema is changed.

This is recommendation seems too strong, because it also advises to use new URI’s when only
small corrections are made that do not affect the meaning, i.e., when the conceptualization is
not changed. This has already caused problems. For example, the Dublin Core working group
changed the URI of their meta-data term definitions when they published a new version with
more precisely stated definitions. This has caused a lot of annoyance in the library community,
who had to work with several URI’s for equivalent concepts. Eventually, the DC steering
committee decided to use one URI for all the versions of their definitions.

8Although we might beintentionallycompliant, because the RDFS specification argues that changing the
logical structure might break depending models. This recommendation could thus be interpreted as only valid
for logical changes.

Michel Klein and Dieter Fensel

Baseline of an identification method When we take into account all these considerations,
we propose an identification method that is based on the following points:

• a distinction between three classes of resources:

1. files;

2. ontologies;

3. lines of backward compatible ontologies.

• a change in a file results in a new file identifier;
• the use of a URL for the file identification;
• only a change in the conceptualization results in a new ontology identifier;
• a new type of URI for ontology identification with a two level numbering scheme:

– minor numbers for backward compatible modifications (an ontology-URI ending
with a minor number identifies a specific ontology);

– major numbers for incompatible changes (an ontology-URI ending with a major
number identifies a line of backward compatible ontologies);

• individual concepts or relations, whose identifier only differs in minor number, are as-
sumed to be equivalent;
• ontologies are referred to by an ontology URI with the according major revision number

and theminimal extra commitment, i.e., the lowest necessary minor revision number.

The ideas behind these points are the following. As already pointed out in the beginning of
this section, the distinction between ontology identity and file identity has the advantage that
file changes and location changes (e.g., copy of an ontology) can be isolated from ontological
changes. By using a new type of URI, it is possible to encode all the information in it that is
necessary for our usage, and it also prevents confusion with URL’s that specify a location.

The distinction between individual ontologies on the one hand and lines of backward com-
patible ontologies on the other hand, provides a simple way to indicate a very general type
of compatibility, likewise the “BACKWARD-COMPATIBLE-WITH” field in SHOE (Heflin
and Hendler, 2000). The distinction we make is also in line with the idea of “levels of gen-
erality”, which is discussed in (Berners-Lee, 1996). Applications can conclude directly —
without formal analyses or deduction steps — that a version can be validly used on data
sources with the same major number and a equal or lower minor number. To achieve a max-
imal backward compatibility, we also propose that not the minor number of the newest re-
vision is specified in a data source, but the minimal addition to the base version that is used
by this data source. For example, suppose an ontology with conceptsA, B andC. Version
1.1 added a conceptD and version 1.2 added conceptE. Then a data source data only re-
lies on conceptsA, C andD, would specify its commitment only to version 1.1, although
there is already a version 1.2 available. We adopted this idea from software-program library
versioning, as described in (Brown and Runge, 2000).

An interesting point for discussion is whether it would be possible to specify thereal
ontological commitment, instead of only the necessary extra commitment. This could lead to
even more detailed decisions on compatibility. In our example, this would mean that the data
sources specifies that it relies on exactlyA, C andD. This would require a different type of
identification.

Ontology versioning on the Semantic Web

The point that states that individual concepts with a identifier that only differs in minor
number are considered to be equivalent, is necessary to actually enable the backward com-
patibility. By default, all resources on the web with a different identifier are considered to
different. This statement allows the creation of a stand-alone ontology revision, which has
concepts that are equal to a previous version.

5.2 Change specification and transparent evolution

For change specification and transparent evolution, there are two important requirements.
First, because of the suggested practice of referring to the minimal extra addition, the changes
in a line of backward compatible ontologies should be easily recognizable and identifiable.
Actually, the additions from one version to another together form aclassof descriptions.
Our suggestion is to make this explicit by adding a classAdditions<Major>.<Minor> , e.g.,
Additions1.2 , of which the new descriptions are an instance. This makes that class a unique
identifier for the set of additions in a certain revision. The additions can be retrieved by asking
for all instances of a specific “Addition” class.

Second, the relation to a previous version should explicitly be specified. One aspect of
this specification is a pointer to the ontology from which it is derived. These pointers to-
gether form a lattice of versions that can be used to deduce the derivation relation from one
version to an arbitrary other version of theontology. A second aspect of this specification is
the relation betweenconcepts and relationsin the previous and current version of the ontol-
ogy. As concepts and relations that do not have the same major number in their identifier are
assumed to be different, this specification should both specify equivalence relations as sub-
sumption relations. However, although a lot of relations between revisions of concepts can be
specified with “subclass-of” and “equivalence” relations, a more extensive (rule-)language is
necessary to enable the efficient specification of the relations, e.g. a language with quantifiers.

We have seen that an explicit specification of the relation between concepts allows to
retain as much information as possible. The relation between two revisions of an ontology
can be specified in a separate translation ontology. Both the previous version of the ontology
and the translation ontology should be linked from the new version, to allow the automatic
collection of all the statements that specify the relation.

6 Conclusions and further work

In this paper, we have explored the problem of ontology versioning in a web based con-
text. We discussed the nature of ontology changes and looked at the consequences. Ontology
versioning shares some characteristics with database schema versioning and program library
versioning, but also as some peculiarities which are specific for the web based context, mainly
introduced by the decentralized nature of the web.

After examining the effects on compatibility of a few example scenarios for ontology
versioning, we have sketched some elements for a versioning framework for ontologies. This
elements are mainly focused on identification and referring. Our main goal in the design of
a framework is to achieve “maximal use” of the available knowledge. This implies that is is
not sufficient to find out whether a specific interpretation of a ontology on data is invalid, but
that we try to derive as much valid information as possible.

The ideas that are presented in this paper will be implemented in the On-To-Knowledge

Michel Klein and Dieter Fensel

project (Fensel et al., 2000b), which builds an ontology-based tool environment to perform
knowledge management, dealing with large numbers of heterogeneous, distributed, and semi-
structured documents typically found in large company intranets and the World-Wide Web.

The work described in this paper is still ongoing. There are a lot of things that are not yet
done. We think that the most important flaw is the lack of a detailed analysis of the effect of
specific changes on the interpretation of data. This could be done in the same line as (Banerjee
et al., 1987), where effects of schema changes on OO databases are analyses. This analyses
should also cover the problem of data that becomes inconsistent. Further, the role of time is
also not taken into account. Finally, a clear example is needed to illustrate the proposals.

Eventually, this work will result in a versioning framework that gives very detailed pro-
cedures to allow evolving ontologies, while achieving maximal compatibility.

References

Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F. (1987). Semantics and Implementation
of Schema Evolution in Object-Oriented Databases.SIGMOD Record (Proc. Conf. on
Management of Data), 16(3):311–322.

Berners-Lee, T. (1996). Generic resources. Design Issues.

Berners-Lee, T., Fielding, R., and Masinter, L. (1998). RFC 2396: Uniform Resource Identi-
fiers (URI): Generic syntax. Status: DRAFT STANDARD.

Bray, T., Hollander, D., and Layman, A. (1999). Namespaces in xml.http://www.w3.org/

TR/REC-xml-names/ .

Brickley, D. and Guha, R. V. (2000). Resource Description Framework (RDF) Schema Spec-
ification 1.0. Candidate recommendation, World Wide Web Consortium.

Brown, D. J. and Runge, K. (2000). Library interface versioning in solaris and linux. In
Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, Georgia.

Champin, P.-A., Euzenat, J., and Mille, A. (2001). Why urls are good uris, and why they are
not. http://www710.univ-lyon1.fr/˜champin/urls.pdf .

Clark, P. and Porter, B. (1997). Building concept representations from reusable components.
In Proceedings of the AAAI’97, pages 369–376.

Corcho, O. and Ǵomez-Ṕerez, A. (2000). A roadmap to ontology specification languages. In
Dieng, R. and Corby, O., editors,Knowledge Engineering and Knowledge Management;
Methods, Models and Tools, Proceedings of the 12th International Conference EKAW
2000, number LNCS 1937 in Lecture Notes in Artificial Intelligence, pages 80–96, Juan-
les-Pins, France. Springer-Verlag.

Fensel, D. (2001). Ontologies: Dynamic networks of formally represented meaning. Rejected
for SWWS.

Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., and Klein, M. (2000a).
OIL in a nutshell. In Dieng, R. and Corby, O., editors,Knowledge Engineering and Knowl-
edge Management; Methods, Models and Tools, Proceedings of the 12th International

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www710.univ-lyon1.fr/~champin/urls.pdf

Ontology versioning on the Semantic Web

Conference EKAW 2000, number LNCS 1937 in Lecture Notes in Artificial Intelligence,
pages 1–16, Juan-les-Pins, France. Springer-Verlag.

Fensel, D., van Harmelen, F., Klein, M., Akkermans, H., Broekstra, J., Fluit, C., van der Meer,
J., Schnurr, H.-P., Studer, R., Hughes, J., Krohn, U., Davies, J., Engels, R., Bremdal, B.,
Ygge, F., Lau, T., Novotny, B., Reimer, U., and Horrocks, I. (2000b). On-to-knowledge:
Ontology-based tools for knowledge management. InProceedings of the eBusiness and
eWork 2000 (EMMSEC 2000) Conference, Madrid, Spain.

Foo, N. (1995). Ontology revision. In Ellis, G., Levinson, R., Rich, W., and Sowa, J. F., edi-
tors,Proceedings of the 3rd International Conference on Conceptual Structures (ICCS’95):
Applications, Implementation and Theory, volume 954 ofLNAI, pages 16–31, Berlin, GER.
Springer.

Gruber, T. R. (1993). A translation approach to portable ontology specifications.Knowledge
Acquisition, 5(2).

Heflin, J. and Hendler, J. (2000). Dynamic ontologies on the web. InProceedings of the
Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages 443–449.
AAAI/MIT Press, Menlo Park, CA.

Klein, M. (2001). Combining and relating ontologies: an analysis of problems and solu-
tions. In Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., and Uschold, M., editors,
Workshop on Ontologies and Information Sharing, IJCAI’01, Seattle, USA.

Oliver, D. E., Shahar, Y., Musen, M. A., and Shortliffe, E. H. (1999). Representation of
change in controlled medical terminologies.Artificial Intelligence in Medicine, 15(1):53–
76.

Pinto, H. S., Ǵomez-Ṕerez, A., and Martins, J. P. (1999). Some issues on ontology integra-
tion. In Proceedings of the Workshop on Ontologies and Problem Solving Methods during
IJCAI-99, Stockholm, Sweden.

Roddick, J. F. (1995). A survey of schema versioning issues for database systems.Informa-
tion and Software Technology, 37(7):383–393.

Roddick, J. F., Craske, N. G., and Richards, T. J. (1994). A taxonomy for schema versioning
based on the relational and entity relationship models.Lecture Notes in Computer Science,
823:137–??

Sheth, A. P. and Larson, J. A. (1990). Federated database systems for managing distributed,
heterogeneous, and autonomous databases.ACM Computing Surveys, 22(3):183–236. Also
published in/as: Bellcore, TM-STS-016302, Jun.1990.

Ventrone, V. and Heiler, S. (1991). Semantic heterogeneity as a result of domain evolution.
SIGMOD Record (ACM Special Interest Group on Management of Data), 20(4):16–20.

Michel Klein and Dieter Fensel

A Implementation in DAML+OIL

This appendix gives a rough sketch how the ideas about identification and change tracking
might be used in RDF Schema or DAML+OIL. In both languages it is a common practice
to use the URL (location) of the ontology as its identifier. This URL is then defined as a
namespace, which makes the terms in the ontology identifiable. However, it is not required
for the namespace mechanism thatURL’s are used. A namespace is defined as follows (Bray
et al., 1999):

[Definition:] An XML namespace is a collection of names, identified by a URI refer-
ence [RFC2396], which are used in XML documents as element types and attribute
names.

...

[Definition:] URI references which identify namespaces are considered identical when
they are exactly the same character-for-character. Note that URI references which are
not identical in this sense may in fact be functionally equivalent.

This means that actuallyURI’s function as identification mechanism.9 It is therefore easy to
adapt this mechanism for our ontology identification mechanism, which uses a separate URI
for ontology identity. We should then first design a URI for ontologies.

According to the URI definition, a “generic URI” has the following format:<scheme>:

//<authority><path>?<query> . Champin et al. (2001) pointed out that the use of a URL
as identification guarantees that the publisher has the authorization to use that specific part
of the URL namespace. This advantage can be retained when the<authority> and<path>

component in the new URI scheme also use the server name and path to the part of the
namespace that is owned by the publisher.

Our suggestion would be to useontology as a name for the scheme, constitute the
<authority> and <path> from the server name and path of a URL, and use the major
(and probably a minor number) as last two elements of the path. A typical identifier for
an ontology would look as follows:ontology://www.cs.vu.nl/˜{}mcaklein/ontology/

example/2/1/ , while an line of backward compatible ontologies is identified byontol-

ogy://www.cs.vu.nl/˜mcaklein/ontology/example/2/ .
There is still one important open question. Using URL’s as ontology identifiers have the

advantage that localization of the file that specifies the ontology is trivial. With separate URI
scheme, we cannot use the URI of the ontology to locate the file that specifies it. There are
several solutions for this problem. One would be to have some kind of lookup system, like a
DNS for host names and IP-numbers. A practical solution would be to provide a direct map-
ping from ontology URI’s to file URL’s. For example, one could agree that when “ontology ”
is replaced by “http ” in a ontology URI, one acquire a URL of a directory with specifications

9Remember that URL’s are a subset of URI’s. The URI definition Berners-Lee et al. (1998) says:

A URI can be further classified as a locator, a name, or both. The term ”Uniform Resource Locator”
(URL) refers to the subset of URI that identify resources via a representation of their primary access
mechanism (e.g., their network ”location”), rather than identifying the resource by name or by some
other attribute(s) of that resource. The term ”Uniform Resource Name” (URN) refers to the subset of
URI that are required to remain globally unique and persistent even when the resource ceases to exist
or becomes unavailable.

<scheme>://<authority><path>?<query>
<scheme>://<authority><path>?<query>
ontology://www.cs.vu.nl/~{}mcaklein/ontology/example/2/1/
ontology://www.cs.vu.nl/~{}mcaklein/ontology/example/2/1/

Ontology versioning on the Semantic Web

of the ontology (conceptualization), and that appendingnewest.rdfs to the directory URL
yields the URL of the most recent specification. Although we now show that there are several
implementation possible, the versioning framework should specify exactly how people and
applications should behave with this respect.

Our suggestion is to extend the meta-information in a DAML+OIL ontology also with the
location of the ontology specification. Together with an identifier, a pointer to the previous
version and the the “translation” ontology, a piece of an DAML+OIL ontology might look as
follows:

<Ontology rdf:about="">
<identifier>ontology://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/</identifier>
<derivation>

<from rdf:resource="ontology://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/" />
<relation rdf:resource="ontology://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/delta/" />

</derivation>
<location>http://www.cs.vu.nl/˜mcaklein/ontology/example/2/1/base.rdfs</location>
<info>${Id}: base.rdfs,v 1.15 2001/05/22 10:26:46 mcaklein Exp $</info>

</Ontology>

...

<rdfs:Class rdf:ID="Additions2.1">
</rdfs:Class>

<rdfs:Class rdf:ID="HBO">
<rdf:type rdf:resource="#Additions2.1"/>

</rdfs:Class>

	1 Introduction
	2 The problem: versioning of ontologies
	2.1 Causes of ontology changes
	2.2 Consequences of the change

	3 Analysis of compatibility
	4 Current practices and requirements
	4.1 Simple example
	4.2 More complicated example
	4.3 Observations
	4.4 Requirements for versioning framework

	5 Building blocks for a versioning methodology
	5.1 Ontology identification on the web
	5.2 Change specification and transparent evolution

	6 Conclusions and further work
	A Implementation in DAML+OIL

